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Abstract

This thesis investigates the scope for using machine learning algorithms within the

context of creating an automated valuation model for single-family houses in Denmark.

It outlines why machine learning yield better predictions, and how it breaks the dogma

of unbiasedness in econometrics by concentrating solely on prediction. This means

that it needs to allow for more complex modelling of inputs, while regularising the

model to reduce the variance of the predictions and also possibly combatting model

uncertainty by creating an ensemble of models. Several different types of models

are compared based on their predictive abilities, and it is found that models which

inherently model complex relationships while still successfully reducing prediction

variance have superior performance. This is done on self-gathered publicly available

data, which have been extracted from several sources. The backbone of the data is

from OIS, consisting of Danish register databases, and is gathered in cooperation with

the land surveying company LIFA A/S. In total, the thesis includes sales of 179952

single-family houses and has 151 input variables for the generalised linear models.

In order to alleviate spatial autocorrelation, which is found to be substantial within

mass appraisal, locational data is gathered and exploited. This data is used to get

distances to locational amenities and to create neighbourhood square metre prices

as an input, which mimics how buyers assess relative prices, but also includes some,

otherwise unobserved, heterogeneity idiosyncratic to certain areas - both locational

amenities but also house characteristics. The model with the best performance is the

extreme gradient boosted regression tree, which incorporates several features from

other models in a seamless and efficient algorithm. Finally, this thesis concludes that

since the machine learning algorithms substantially outperform both the linear model

and SKAT’s suspended valuations, they should be considered more heavily in Danish

mass appraisal models.

Indeholder data fra Styrelsen for Dataforsyning og Effektivisering
The data set GeoDanmark is downloaded the 11th of April 2018
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Introduction

1 Introduction

1.1 Housing valuations: a difficult task

Long has the Danish real-estate valuations been heavily criticised for being unfair and poorly

estimated. In 2003, SKAT, who has jurisdiction over collecting taxes in Denmark, was assigned

to the job. However, according to a report in 2013 by Rigsrevisionen, the Danish government’s

independent audit authority, SKAT has not lived up to its responsibility of providing good and

fair valuations [Rigsrevisionen, 2013]. According to an article in the news section of the Danish

ministry of taxation’s webpage, the report from Rigsrevisionen partly led to the suspension of

further valuations from SKAT1. The former government then appointed a committee, the so-

called Ekspertudvalg om Ejendomsvurdering (Engbergudvalget) to investigate the scope for a

new model for calculation. In 2014 they submitted their final report, which showed that it is

possible to establish a more transparent valuation system based on better data and with start-

ing point in statistical methods and laid out the groundwork for a given statistical model. The

work was followed up by Skatteministeriets (Ministry of Taxation’s) Implementeringscenter for

Ejendomsvurdering (ICE), who plans to implement the new system in 2019 [ICE, 2016]. This is

a new era of Danish valuations, since SKAT has not previously set out specifically to determine

their valuation of a single-family house based on the selling prices of similar houses. In fact,

Rigsrevisionen [2013] writes that SKAT, at that point, actually found this approach wrong. But

Rigsrevisionen [2013] finds it very important to have a viable frame of reference, especially since

citizens have a right to complain if they are dissatisfied with their valuation. Furthermore, a

reasonably large portion of Danish taxes are collected as housing taxes; 38 billion Danish kroner

yearly according to Rigsrevisionen [2013]. Thus, it is very relevant to be able to provide a just,

more transparent and precise basis for collecting these taxes.

A statistical model that finds the relationship between house prices and characteristics influ-

encing the price is called an Automated Valuation Model (AVM) or Computer Assisted Mass

Appraisal (CAMA), and the literature investigating these relationships is fairly extensive, as seen

in the literature review section, Section 2. The benefits of a good AVM are not only useful for

taxation purposes but also useful for banks, rating agencies and aspiring homeowners or sellers.

These other stakeholders favour precision in estimates comparatively more than the government,

and so the scope for this thesis is to investigate statistical modelling with out-of-sample (and

therefore prediction) focus. This thesis is not the first to explore these techniques, which goes

1www.skm.dk/aktuelt/nyheder/2016/oktober/danskerne-faar-nye-og-mere-retvisende-ejendomsvurderinger-i-
2019
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Introduction

under the name of machine learning, on housing data. In fact, there are several websites that

provide this service, such as www.zillow.com for the US market, although none does this in Den-

mark. Moreover, the scope for using these techniques in economics in general is vast as found

in Athey [2017]. Athey [2017] finds the transformation of economics given these techniques im-

portant, all the while making it more relevant for economists to worry about what they have

always worried about in regards of the data’s capabilities of identifying causal effects. Therefore,

this thesis will motivate the use of recent developments in prediction modelling using machine

learning in general with the Danish housing market as a very relevant case study. In addition,

it will explore the scope for using machine learning methods for mass appraisals with a special

focus on the Danish government’s use of these predictions for taxation purposes.

In the next subsection, the differences between traditional statistical models and machine

learning models are introduced, and how these differences make machine learning models better

for prediction purposes.

1.2 Making better predictions with machine learning

Machine learning techniques might seem similar to standard statistical models, such as the linear

regression model, arguably the most frequently used statistical model type used, but they are fun-

damentally different. As standard econometric models are concerned with uncovering structural

or causal relationships, unbiasedness is paramount. Simply, they aim to minimise the difference

between the estimator’s expected value and the “true” value of said parameter within a given

function class. Biases can stem from many different sources, one of them being omitted variable

bias, which occurs when we leave out one or more relevant variables. A strategy can then be

to include all possible variables in the model to eliminate unbiasedness given the function class

is correctly specified, but that requires a large degree of freedom which increases the prediction

variance. Moreover, as convenient it may seem to specify the model as linear, due to the easily

interpretable results it yields, as unlikely is it that the true data generating process is linear

in general. These problems are the focal points of machine learning, and the trade-off can be

mathematically expressed; that expression is called the bias-variance decomposition (explained

in Subsection 3.2). It shows us that there is a trade-off between bias and variance when pre-

dicting an uncertain event. Thus, machine learning is breaking with the dogma of unbiasedness

and focusing primarily on prediction2; so the techniques are trying to minimise both bias and

variance simultaneously, leading to possibly far better predictions. The scope for using these

2As a side note, Explainable Artificial Intelligence (xAI) is a sub-element of machine learning trying to alle-
viate the interpretability problem inherent to the techniques, or using machine learning predictions in auxiliary
predictions problems as well as main predictions problems.
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Introduction

methods specifically for real-estate valuation is large; the amount of data available is huge, the

complexity of the relationships between the input variables and the outcome variable is immense,

and the focus should mainly be on prediction rather than estimation of parameter values to ex-

tract causal relationships. To add to the point of the applicability of machine learning techniques

to housing valuations, Mullainathan and Spiess [2017] uses that exact example throughout their

article. They look directly at the differences between traditional econometric approaches and

machine learning. They describe the main difference between supervised machine learning and

traditional econometric approaches as the former revolving around prediction, and how it man-

ages to uncover generalisable patterns, and the latter revolving around parameter estimation;

finding good estimates of parameters, β, that underlie the relationship between the dependent

and independent variables. Cherkassky and Mulier [2007] also make a point out of distinguishing

between traditional statistical model estimation and machine learning. They explain that clas-

sical statistics assume that the data is generated from some distribution with known parametric

form, and the goal is to estimate certain properties of that distribution. So classical statistics

rely heavily on parametric assumptions and asymptotic arguments. For example, applying the

maximum-likelihood approach to linear regression with normal independent and identically dis-

tributed (niid) noise leads to parameter estimation via least squares. Once again, they emphasise

that machine learning techniques are explicitly created to fit models to have good generalisation

capabilities within finite samples.

1.3 Data

The data is derived from several Danish register databases as well as relevant open data in

order to include as much relevant information as possible affecting house prices. The main part

of the data is gathered in cooperation with the land surveying company LIFA A/S through

”Den Offentlige Informationsserver” (OIS), which includes the register databases ”Bygnings- og

Boligregistret”(BBR), ”Statens Salgs- og Vurderingsregister”(SVUR) and ”Det Fælleskommunale

Ejendomsstamregister” (ESR). They jointly contain information on all sales and valuations of

Danish real-estate property including building-specific information such as construction materials,

location and size. In addition to this, public data from GeoDanmark and Statistics Denmark is

gathered, which gives information on locational amenities, such as distance to the coast and the

nearest train station, and municipality characteristics, such as the local unemployment level. In

the house pricing literature, there are reported problems about spatial autocorrelation, an effect

stemming from spatially close houses being similar in appearance and structure while also sharing

the same locational amenities, such as shopping opportunities etc. This problem is alleviated by
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creating input variables that measure local square metre prices in a given year. In total, the thesis

includes sales of 179952 single-family houses and has 151 input variables for the generalised linear

models. This data is gathered for the years 2005-2016 and can easily be extended. Noteworthy

is it that 2016 is used as a test year since SKAT’s appraisals, to which the models are held up

against, are updated to be relevant for this year - but not other years.

1.4 Structure of the thesis

In Section 2, the preceding literature on housing valuations and the prediction of house prices is

reviewed. The ”why” and the ”how” of automated valuation models is looked into, as well as the

progress in Danish context. The Danish market is briefly investigated using literature primarily

from the National Bank of Denmark. Moreover, the recent developments around property ap-

praisals and their uses, in e.g. ad valorem taxation, are presented.

In Section 3, an introduction to machine learning is given in a model-free way, where the primary

focus will be on the bias-variance trade-off and how to (and to what extent one can) estimate

generalisation error.

In Section 4, how we can use the generalisation error to tune model parameters, and hence

the optimisation of the model for prediction in a data-driven way, is investigated. Parallels to

Bayesian model estimation is drawn, and how several of the regularisation techniques can be

viewed in a Bayesian way are outlined throughout the section. Later, Bayesian methods of model

estimation and model averaging methods are also considered. In this section, several ensemble

methods and other methods of optimising the prediction model using more models are introduced.

In Section 5, individual supervised learning techniques for regression are introduced. Namely,

tree-based methods such as the random forest and gradient boosted trees, K-nearest neighbour

regression and several types of neural network architectures are explained.

In Section 6, the data set is described together with the processing it has undergone; descriptive

statistics on the included variables is given, and a description of how the data set is cleaned.

Furthermore, summary statistics are presented to give an understanding of what the data looks

like.

In Section 7, the results of the developed models are presented and compared to SKAT’s valu-
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ations. They are compared with SKAT’s valuations in the same manners as in ICE [2016]. How

some of the methods are regularised, and what effect that has on their generalisation abilities, is

evaluated. Finally, the models are also compared to each other.

In Section 8, concluding remarks from the analysis is given. It makes remarks on the predictive

ability of machine learning algorithms in contrast to generalised linear models, and how either

the public or the government could use these. Furthermore, suggestions on how to improve upon

the model, and what else should be evaluated for successful implementation, are considered.
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2 Literature Review and Danish Property Appraisals

2.1 An Automated Valuation Model (AVM)

Market value predictions for residential properties are important for investment decisions and risk

management of households, banks and real estate developers [Schulz et al., 2014]. Furthermore,

the government uses them for ad valorem tax purposes, where it is commonly split between lot

value and property value. Schulz et al. [2014] provide a comprehensive insight into the data

needs and the stages involved in developing an Automated Valuation Model (AVM)3. They also

examine the statistical model development and how to validate the predictive model. They find

that one of the most important features of mass appraisal is the availability of good data, although

some real-estate properties are too distinct to be properly appraised in automatic manners when

the objective is providing a good basis for taxation. Hence, it is okay for the AVM to focus

on real-estate properties where structural and location characteristics are easily observed and

homogenised with the spatially close properties, since properties that fall out of this category

can be valued by a professional valuer (or appraiser) in a full physical inspection. The physical

inspection may be more precise than the AVM but is also time consuming and expensive. In

many instances, market participants are prepared to trade off predictive accuracy for cost. First,

banks can use low-cost appraisals when underwriting loan advances, home equity withdrawals and

remortgaging, or they could use it to manage risk as a tool to monitor collateral values underlying

the bank’s portfolio of mortgage loans. Second, rating agencies may request information about

current loan-to-value ratios to estimate loss severity and probability. Third, aspiring property

owners (or sellers) will want to get an idea of the cost of a home (get a feeling of how much they

can get for the home). Sellers would then be able to use the information to inform the decision to

relocate. And, of course, fourth, government agencies can use AVM’s as cost-effective appraisals

for taxation, planning and land-use regulation. The literature on AVM’s is large enough to have

a defined standard for mass appraisal of real property, and IAAO [2013b] defines this standard.

The standard is focused on appraisal for ad valorem tax purposes, but they deem it relevant for

other sakes as well. The reason for a specific standard related to mass appraisal for ad valorem

tax purposes is the additional requirements of the government related to the defence of the given

appraisal of a property. In any given case, the appraiser should be able to defend and explain the

given appraisal to the property owner. McCluskey et al. [2013, 2014] indeed name that a critical

factor for the AVM is the explainability of the model in terms of being able to defend the estimates

in a formal setting, such as an appeal tribunal or court. It is given in the committee report of the

3The term is also interchangeably used with Computer Assisted Mass Appraisal (CAMA).
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Danish government investigating the scope for a new mass appraisal model (Engbjergudvalget’s

rapport, Jensen et al. [2014]) that an overriding principle is that of greatest possible transparency.

The committee sees this as a prerequisite for the general acceptance of the model as grounds for

taxation as well as comprehension of the results and in extension hereof optimal opportunity to

complain. Kauko and d’Amato [2008] set up further criteria for comparison between modelling

approaches: predictive accuracy, conceptual integrity, internal consistency of the model, reliability

and robustness of the model, and feasibility in terms of cost and time efficiency. Even though

single predictions are difficult to explain within the (relative) ”black-box” nature of some machine

learning algorithms [Friedman et al., 2009], McCluskey et al. [2013] still evaluate models based

on predictive accuracy on grounds that it is considered the fundamental component of an AVM;

as will be done in this thesis. Previous studies of machine learning algorithms for mass appraisal

have focused on the performance of Artificial Neural Networks, see for example Tay and Ho

[1992], Kathmann [1993], Limsombunchai [2004], Peterson and Flanagan [2009], but there are

also attempts using other techniques, such as using boosted regression trees in McCluskey et al.

[2014] and random forest regression in Antipov and Pokryshevskaya [2012]. With almost no

exceptions (none is found), they find that machine learning algorithms are superior in predictive

accuracy in the housing markets, which is aligned with the general literature on machine learning.

These techniques stand in contrast with the traditional approach of a hedonic price based on

the work of Sherwin Rosen in Rosen [1974], which is then primarily estimated using OLS as in

Goodman and Thibodeau [1995], Ottensmann et al. [2008], Payton et al. [2008]. Though some

of these applications of OLS are primarily for the use of assessing the causality of explanatory

factors within the house pricing equation, as it is for Ottensmann et al. [2008] in estimating

the effect of spatial proximity of houses and employment centres and for Payton et al. [2008] in

estimating the effect of green areas in urban environments on housing prices, these methods are

considered the method of choice for an AVM [Gloudemans and Miller, 1976, Mark and Goldberg,

1988, McCluskey et al., 2014]. So much so that many countries, including Australia; New Zea-

land; Canada; USA; Netherlands and Denmark, use versions of it for property tax assessment

[McCluskey et al., 2014]. However, as aforementioned, this might be due to the explainability

factor especially relevant for government issues. There is an extensive literature of different prob-

lems related to the estimation of prediction equations using linear OLS models in the area of

property pricing. The most prominent problem is that of spatial autocorrelation. This problem

is well explained in Basu and Thibodeau [1998], who argue that spatial dependence exists be-

cause nearby properties will often have similar structural features (they are often developed at

the same time) and also share locational amenities, such as having equally good grocery shop-

ping possibilities, equally good access to job opportunities or the same waterfront view. This
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problem has led to some model specifications actively seeking to alleviate it while still staying in

the realm of an explainable model, such as the hierarchical model of Goodman and Thibodeau

[1998], the simultaneous autoregressive model and the geographically weighted regression both

evaluated in McCluskey et al. [2013]. Goodman and Thibodeau [1998] also give an excellent

review of what factors will influence the creation of sub-markets of similar houses, and how it

becomes to be so that spatially close houses have some of the same features. For example, they

find that if the hedonic price of fireplaces is to exceed the cost of building one, then suppliers will

build houses with fireplaces, and landlords with units that do not have fireplaces will install them.

Implementeringscenter for Ejendomsvurdering (ICE), who took up the job of implementing the

new mass appraisal model after Engbjergudvalget, writes in ICE [2016] that they have created a

neighbour model, which by that time was expected to constitute Denmark’s new mass appraisal

model for taxation of property. Their neighbour model is a local weighted average, where spatially

close houses are given more weight, determining the average log square metre price in the area and

a hedonic price model similar to that in Ottensmann et al. [2008]. These models are combined so

that the weighted log square metre price is the intercept in the model, and dissimilarities between

the given house and the spatially close ones are adjusted using the estimates from the hedonic

model.

In a personal email, the head of ICE has told me that they now want to apply a K-nearest

neighbour for determining area square metre prices for similar properties for use in their re-

gression. Furthermore, they want to add a generalised additive model where a two-dimensional

spline constitutes the geography, and the rest of the input variables is modelled using a hedonic

regression model adjusted for neighbour prices and neighbour house specifications. Furthermore,

they apply an eXtreme Gradient boosting (XGboost) model to compare results with their model

and make further investigations into the houses where the models disagree. In ICE [2016], they

compare their results to SKAT’s older model, which is still the one used in practice, and find

that they have more precise results based on the objective of estimating realised prices. However,

SKAT’s results are a bit different, as they are not designed explicitly to predict house prices,

but they have also had manual corrections on specific houses that are difficult to predict [ICE,

2016]. Even though ICE will not directly implement machine learning algorithms directly in their

predictive equation, the scope for doing so is immense since the taxes amount to a significant

amount of the government proceeds, and there are a lot of other applications where predictive

accuracy is paramount. Machine learning techniques are specifically designed for good predictive

ability, as they in a smart way try to minimise generalisation error [Mullainathan and Spiess,

2017]. Friedman et al. [2009] is a good place to start learning about machine learning, as it
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is a fairly straightforward and comprehensive book on the motivation for, applications of and

methods of machine learning. In this thesis, models from two genres with different methods of

creating ensembles from those genres will be applied. These models then include a version of

boosted regression trees, based on the developments of the boosting technique in Schapire and

Freund [2012] which has shown great predictive abilities in general and good promise within house

predictions in McCluskey et al. [2014]. They also include a random forest model, which works by

constructing several regression trees where only a randomly chosen subset of the input variables

can be selected for splitting in each tree and finally averages them. This procedure decreases the

similarities between models and hence decreases the variance of the final predictions. Finally,

these models will be compared with the neural network model which has been the primary choice

of statistical academics trying to predict house prices due to its ability to estimate highly complex

and non-linear relationships [Peterson and Flanagan, 2009]. The literature surrounding machine

learning will be investigated further in the coming sections.

As we will be making appraisals for Danish single-family houses it is valuable to look into that

market on a general level; how has the market been moving? which factors affect the market?

what are the dynamics of the markets? how is the legislation designed? and which changes are

expected? The next subsection will briefly sum up the literature on these issues.

2.2 A primer on the Danish real-estate market the past decade

In 2011, after the supposed housing bubble burst, the Danish central bank published an extensive

article analysing the Danish housing market up until that point. In an abbreviated form, the

article Dam et al. [2011] will be used to understand the dynamics of the market.

First of all, like any other market, it is driven by the forces of supply and demand. The demand

on a macroeconomic level depends on the expectations of the stability of the market, the borrowing

costs, the households’ disposable income and much more. The supply on a macroeconomic level

is seen to be responsive to the housing prices, and so when the house prices are appreciating a lot

of new construction is beginning. However, of course, new buildings are not built instantaneously

and so increasing demand for housing, driven by, for example, the increase in disposable income,

is not entirely swamped up by new development. Furthermore, there are several reasons to why

a stable housing market is to be preferred. For example, the government will want to have ad

valorem taxes on housing not to prefer this type of investment against other investment vehicles,

and so the housing market is also dependent on the taxation scheme and the general legislation

[Klein et al., 2016].
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In 2004-06 the Danish economy was booming with relatively low borrowing costs and an

increasing disposable income for the majority of households, which was reflected in the property

market. At its highest in 2007, the average price for single-family houses was 54 percent higher

in real terms than 2003 [Dam et al., 2011]. This led to a highly increased building activity

as predicted by Tobin’s Q of the housing market4, where several contractors were drawn to

the market in search of profits. Furthermore, the availability of plots of land for development

varies across the country, and it is namely in Copenhagen that the highest price increases have

occurred lately. Due to several legislative as well as natural courses, the development here is still

sluggish and therefore inelastic compared to the rising demand [Dam et al., 2011]. Several authors

including Dam et al. [2011], Isaksen [2015], Klein et al. [2016], Hviid and Kramp [2017] believe

that the recent price increases in the Copenhagen area is partly due to the 2002 tax freeze, where

the taxable value of a house was frozen, and so increases in the value of a house does not lead to

higher taxes - the effective tax rate was declining. This had re-distributional effects as the house

prices in Copenhagen rose more than in the rest of the country, and so the majority of the tax

break was distributed to Copenhagen homeowners5. Furthermore, the natural stabilising effects

housing taxes was reversed, as appreciating property prices yield lower effective tax rates instead

of higher taxes. Some of these authors, such as Isaksen [2015], are warning against a local house

price bubble in the Copenhagen area, which has not burst as of this moment.

In recent years the housing market has rebounded from the recession, as seen on the figure

on the next page, and in the Copenhagen area the single-family houses investigated in this thesis

is almost at the height of the peak in 2007. In the second graph, we can also see that the

Copenhagen housing market has grown a lot more since 1993 than the whole of Denmark. It also

seems to be more volatile, which is supported by the paper Hviid [2017]. This paper investigates

regional differences and how the sub-markets are interconnected and finds that the Copenhagen

area creates a ripple effect in prices to other parts of Denmark that is much stronger than the

ripple effect from the opposite direction.

4Which is defined as the ratio between the established housing prices and their replacement value.
5In addition to this, then, as of this moment, the marginal tax on houses worth more than 3.040.000 kr is to be

taxed three times higher than otherwise. However, as of the tax freeze, houses increasing beyond that level received
an even greater amount of the tax break, and these houses were mainly in the Copenhagen area [Dam et al., 2011].
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Figure 2.1: Danish House Price Indices

Note: The displayed house price indices is divided by the Danish consumer price index to present them in real terms. The

indices are using 2015 as base year. The first graph displays the House Price Index of Denmark and is used in the algorithms

to give an indicator of the level of prices in the housing market. The second graph displays the price indices for single-family

houses sold in Copenhagen and the whole of Denmark respectively .

Source: Statistics Denmark.

According to Hviid and Kramp [2017], the Danish government is reinstating variable taxes

on housing (varying with respect to the valuation and not frozen at some level), which both
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Hviid and Kramp [2017] and Klein et al. [2016] believe is sound policy, since it will dampen the

volatility of the market. Furthermore, Klein et al. [2016] suggest that it will have an impact on

the price level of housing in the Copenhagen area due to higher taxation costs, as the benefits of

the artificially lowered effective housing tax are annulled.

It is important to notice that none of the results of this paper have any dynamical features,

and so they do not have any abilities to predict an economic downturn or housing market collapse

but are merely a reflection of the housing market as of today, and how the market will price a

given house in the population. Furthermore, it does not take into account the increased supply

relating to the increasing house prices following a demand increase.
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3 Prediction in the Era of Big Data

The economic science has evolved rapidly over the recent decades along a number of dimensions,

from previously being driven mainly by theoretical work to subsequently being driven highly by

empirical work. The data revolution of the past decade is likely to continue as the quality and

quantity of data on economic activity are expanding rapidly [Einav and Levin, 2014]. Examining

the changes in patterns of coauthorship, age structure and methodology in the three top general

economics journals for one year in each decade from 1960s-2010s, Hamermesh [2013] concludes

that top journals are publishing a decreasing number of papers that represent pure theory and an

increasing number of empirically based studies of phenomena. The economic literature using large

data sets is still primarily relying on traditional econometric techniques, where the researchers put

considerable thought into controlling for heterogeneity, limiting bias or obtaining carefully con-

structed standard errors for the main parameters of interest. In addition, although using several

different specifications of one’s model to assess robustness, a single preferred specification, more

likely than not linear, is the focus. This approach, both in conception and execution, stands in

contrast to some of the recent developments in statistics and computer science [Einav and Levin,

2014]. This view is backed up by Cherkassky and Mulier [2007], who believes that these classical

methods are unsuited for many applications because the parametric modelling in finite samples

imposes too rigid assumptions about the unknown dependency between dependent and inde-

pendent variables. This imposed rigid parametric form tends to introduce a large modelling bias

(discrepancy between the assumed parametric model and the unknown truth). These approaches,

focusing more on model uncertainty than on statistical uncertainty, is the main emphasis of this

section.

3.1 An admission of uncertainty

One of the certainties we have in this world is the randomness of a fair coin. Coin tossing is

one of the most basic examples of a random phenomenon. A single toss can be modelled as a

Bernoulli random variable since the outcome of the toss is success/failure, and we would expect

the probability of both heads and tails to be 50%. However, coin tossing is not random - it obeys

the laws of mechanics, and a coin’s flight is determined by its initial conditions [Diaconis et al.,

2007]. So the parameter of the model, p, is not fixed. It can be modelled itself to give a better

guess on the probability of heads coming up than by mere chance. The following distinction

between notions of probabilities is set up for the reader to notice the subtleties of uncertain data,

uncertain parameters, and uncertain models. The solution to the above-mentioned coin tossing

problem could be, as always, to collect more data, and thus, by tossing the coin many times and
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noting the result of each coin toss under different circumstances, and using this data to estimate

the conditional probabilities of the coin ending up heads. In a frequentist sense, the probability

is the limit of a long-run relative frequency:

P(A|B) = lim
n→∞

m

n

where m is the number of heads under a given precondition, B, and n is the number of trials

under that precondition. In contrast, Bayesian probability statements are about states of mind

over the state of the world, and not about the states of the world per se. This subjectivist

view of the world allows us to attach probabilities to propositions reflecting our degree of belief

in the proposition. Bayes Theorem then tells us how to rationally revise our belief about said

proposition in the light of data [Jackman, 2009]. Following Jackman [2009], we say θ is some

object of interest subject to uncertainty - a parameter, a hypothesis, a model, a data point - then

Bayes Theorem tells us how to rationally revise our prior beliefs about θ, P(θ), in the light of

data y, to yield posterior beliefs P(θ|y).

Bayes’ Theorem:

P(A|B) =
P(A ∩B)

P(B)
=

P(B|A)P(A)

P(B)
. (3.1)

Bayes’ Theorem tells us, then, how to change any belief about a given proposition and provide

us with means to summarise our idea of said belief in a probability distribution. We are therefore

allowed not to think about parameters as fixed objects to be truthfully estimated but to be objects

used to reflect our degree of belief about a proposition, themselves being objects of uncertainty.

In the coin tossing example, we are allowed to have a prior on the probability of success to be

50% with a low uncertainty on that proposition and then collecting data that might disprove the

prior. If enough evidence suggesting that a low toss changes the probability of success is gathered,

we can use this information to revise the posterior probability.

Furthermore, if one then wants to use said parameters of a model to predict an event, it is not

only the mode of the parameter distribution that is of interest, it is the whole distribution6. That

is, we want to integrate all our beliefs about the event to form our prediction. Now, if we are also

subject to model uncertainty, as we most frequently are, then what is to say that we should not

6This is not necessarily true for simpler linear models, where we have an uninformative prior and where the
parametric assumptions imply that the parameters are normally distributed - in this case, the mode and the mean
of the distribution is the same, and the tails of the distribution will equal out their contributions to the predictions
of the expected effect. Then, the distribution of the prediction can also be analytically derived in easier manners
than Markov Chain Monte Carlo (MCMC) methods of Bayesian statistics. This follows the general common-sense
principle that one should not attempt to solve a specified problem by indirectly solving a harder general problem
as an intermediate step.
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make use of all our models predictions to help predict a certain event instead of picking a single

one out? Talking about model uncertainty, Varian [2014] notes that an important insight from

machine learning is that averaging over many small models tends to give better out-of-sample

prediction than choosing a single model. Furthermore, he ponders how econometricians have not

taken up the habit of using these methods in the statement:

”Ironically, it was recognised many years ago that averages of macroeconomic model forecasts

outperformed individual models, but somehow this idea was rarely exploited in traditional

econometrics.”

[Varian, 2014]7

In contrast, it might be wise enough to retain model interpretability, which will undoubtedly

be squandered when averaging over models, if the goal is extracting causal relationships for

inference. However, if the goal is prediction, we should be very wrong to do so.

So, in summary, when we want to predict outcomes the focus should not be on sampling or

statistical uncertainty, as in traditional econometrics, but on model uncertainty. The focus on

sampling uncertainty over model uncertainty when having vast amounts of data in our sample

seems strange. The adaptive methods in machine learning have the aptitude of achieving greater

flexibility by specifying a broader class of approximating functions in contrast to the rigid para-

metric modelling of classical statistics [Cherkassky and Mulier, 2007]. The next section will

focus on the bias-variance trade-off, which will help us quantify and find data-driven methods

of alleviating model uncertainty, especially when we generalise a model from one sample to an

independent test data.

3.2 The bias-variance trade-off

Following Friedman et al. [2009], we first consider an unknown vector of the target variable Y ,

an unknown matrix of inputs X, and a prediction model f̂(X) that has been estimated from

a training set T . The loss function for measuring errors between Y and f̂(X) is denoted by

L(Y, f̂(X)). For real-valued outcomes, some typical choices are

L(Y, f̂(X)) =

(Y − f̂(X))2 squared error

|Y − f̂(X)| absolute error.
(3.2)

The test error (also named generalisation error), is the prediction error one makes when general-

ising one’s model over an independent test sample

7As an exception, Varian [2014] finds that Bayesian model averaging methods have seen a steady flow of work.
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ErrT = E
[
L(Y, f̂(X))|T

]
(3.3)

where both X and Y are random samples from their joint distribution (Y,X). This is not to be

mistaken from the expected prediction error

Err = E
[
L(Y, f̂(X))

]
. (3.4)

The expectation here averages over all that is random, including the randomness in the training

set T , that produced f̂(X); which becomes more apparent through the relation Err = E [ErrT ].

So Err, consequently, is the error that does not account for the fact that the training set is drawn

from a larger, population, data set.

Most statistical methods effectively estimate the expected error, Err, instead of the goal ErrT .

It does not seem possible to estimate the conditional error effectively, given only the information

in the same training set [Friedman et al., 2009]. Methods to try to do so is developed, such as

the cross-validation method of Subsection 3.3.4 or simply retaining a part of the data for testing

purposes. They will be discussed later on in this section.

The sample equivalent of the expected prediction error is the training error, and that is the

average loss over the training sample

err =
1

N

N∑
i=1

L(yi, f̂(xi)). (3.5)

Here, as the model becomes more complex, it maps closer to the data and is able to adapt to more

complicated underlying structures, but also more underlying noise. Hence, there is a decrease in

bias and an increase in variance.

In order to formally investigate this matter further, let us make a decomposition of the error.

First, let us assume that Y = f(X) + ε, ε ∼ N(0, σ2
ε ), then we can derive an expression for

the expected prediction error, Err, of a regression fit f̂(X) at an input point X = x0 under

squared-error loss as

Err(x0) = E
[
(Y − f̂(X))2|X = x0

]
= E

[
Y 2 + f̂(x0)2 − 2Y f̂(x0)

]
= E[Y 2] + E[f̂(x0)2]− 2E

[
Y f̂(x0)

]
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and using the definition of variance8 to get

Err(x0) = Var [Y ] + E [Y ]2 + Var
[
f̂(x0)

]
+ E

[
f̂(x0)

]2
− 2E

[
Y f̂(x0)

]
= σ2 + Var

[
f̂(x0)

]
+ f(x0)2 + E

[
f̂(x0)

]2
− 2f(x0)E

[
f̂(x0)

]
= σ2 + Var

[
f̂(x0)

]
+
[
E
[
f̂(x0)

]
− f(x0)

]2

Err(x0) = irreducible error + variance + bias2. (3.6)

Here the first term is the variance of the outcome variable around its true mean f(x0). This factor

cannot be avoided, and in order to make good predictions out-of-sample, we must be careful not

to map to close to the outcome variable, as we will be mapping some of this noise in the training

data as well. The third term is the squared bias. It is the amount by which we expect our

estimate to deviate from the true mean. If we do not make our model complex enough to capture

the important relationships in the data, the model will not be generalising well either, as it will

introduce too much bias. The second term is the prediction’s variance. Variance is the part of

prediction error related to the complexity of one’s model; formally it is the expected squared

deviation of the prediction around its mean under squared-error loss. Then, typically, the more

complex we make the model, the lower the bias, the higher the variance [Friedman et al., 2009].

As an example, let us think about the curse of dimensionality, a phenomenon arising from

analysing data in high-dimensional spaces, and a term coined by Richard E. Bellman in Bellman

[1961]. Let us first consider a unit cube with inputs uniformly distributed within a p-dimensional

hypercube in the nearest-neighbour problem. Say we want to capture a fraction r of the observa-

tions, then we require an expected range in each of the dimensions in the order ep = r1/p. That

is, it is exponentially increasing in the number of dimensions. With p increasing, the range of

the variation necessary in each variable is getting larger, and so assigning a value to the nearest

neighbour might seem unwise, if the nearest neighbour is not ”local” anymore [Friedman et al.,

2009].

The idea can be extended to other model types and is definitely also prevalent within the

linear framework. So, although one might want to include all possible variables, comprising also

generalisations of the linear model such as interactions and powers, in one’s model to increase

flexibility, it might not be the best way to increase that flexibility at the expense of variance.

In the case of housing prices, we could consider looking at only houses with brick walls and

houses with wooden walls, and for the sake of argument, let us still go under the belief that

8Var [Y ] = E
[
Y 2
]
− E [Y ]2.
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each variable is uniformly distributed between 0 and 1. The range in each variable required in

order to capture 10% of the data in order to form a local average is 31.5%9, which is not an

insurmountable requirement. But if we also consider concrete walls, light concrete walls or built

with half-timbering, and we then include size variables, such as size of building ground, total

building area on all floors or the size of the ground, and we could include location variables, other

house variables or somewhat miscellaneous variables, then it is another story. Let us say these

variables number up to p = 150, then the range required in each variable will be 98.5%10. In the

example of house prices given by Mullainathan and Spiess [2017], they also rhetorically ask why

interactions between variables should not also be included as the effect of the number of bedrooms

may well depend on the base area of the unit, and the added value of a fireplace may be different

depending on the number of living rooms. However, simply including all pairwise interactions

would be infeasible as it produces more regressors than possible to fit11; in our case that would

amount to 1132512, but other interactions or functional forms of specific variables could also be

of interest. In such situations the available data quickly becomes sparse.

Some machine learning models automatically look for complex relationships between the in-

dependent variables in different ways according to the model class and are designed not to overfit

the data - to fit too tightly to the in-sample training set, such as to fit also the idiosyncratic

errors contained in it. A distinction between classical statistics and machine learning can be

made here; the goal of learning (estimation) within statistical modelling is accurate identification

of the unknown system, whereas under predictive learning, the goal is accurate imitation of the

system’s output [Cherkassky and Mulier, 2007]. This means that, for example, machine learning

does not have to include both of two highly correlated variables, which would increase variance,

and it does not necessarily have to choose between them either - in fact, it can remain rather

agnostic about that kind of choice.

These machine learning models are built from the idea of regularising the model in order to

minimise out-of-sample error. Machine learning models, therefore, include parameters to tune

model complexity according to a given appropriate loss function. This tuning parameter should

be based on an estimate of prediction error [Friedman et al., 2009], and there are several ways to

9e2 = 0.11/2 = 0.3162.
10e100 = 0.11/150 = 0.9848.
11When having a large amount of observations as well, we can even run into problems of too low computer memory

since having 11325 variables and 179952 observations will exhaust all computer memory plus some. As some of
the variables are one-hot encoded, such as the walling in the previous example, they are mutually exclusive, and as
they are also dummy variables, then they cannot be included with squares. However, even with these exceptions,
the computer memory is still exhausted.

12From the formula expressing the sum of a series, S = N(N+1)
2

+N ; in this case 150(150+1)
2

+ 150 = 11325.
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do so. The next subsection is dedicated to an overview and discussion of these estimates.

3.3 The estimation of prediction error

The estimation of prediction error can be handled in several ways according to practical prefer-

ence. Direct estimates of generalisation error, such as cross-validation or bootstrap methods, are

computationally heavy and require the model to be estimated a number of times. As an alternat-

ive, there are several statistics based in the in-sample error, and although this error is not of direct

interest since future values of the features are unlikely to coincide with the training set values,

these methods are convenient and often lead to effective model selection. The reason is that the

relative rather than absolute size of the error is most important when selecting models [Friedman

et al., 2009]. The downside to this, which will be seen later, is that it requires us to know the

degree of freedom, which is awkward in non-parametric or regularised models. Nonetheless, it is

a good starting point for the introduction of prediction error estimates.

So, in addition to the error statistics mentioned in the previous subsection, we should also

mention the in-sample error

Errin =
1

N

N∑
i=1

EY 0

[
L(Y 0

i , f̂(xi))|T
]
, (3.7)

where the Y 0 notation indicates that we observe N new response values at each of the training

points xi, i = 1, 2, ..., N , and that is what the expectation is over; so that we in this procedure have

averaged out idiosyncratic error related to the outcome variable as N goes to infinity according

to the law of large numbers [Friedman et al., 2009]. We can then define the optimism as

op ≡ Errin − err. (3.8)

This value is typically positive as err is usually biased downwards as an estimate of the prediction

error because the model frequently fits the in-sample irreducible error as well. In the estimate of

err this will show through a lower predicted error. Now, the average optimism is the expectation of

the optimism over several training sets, much like the relationship between the expected prediction

error and the actual prediction error,

ω ≡ Ey(op). (3.9)

Here the predictors in the training set are fixed, and the expectation is over the training set

outcome values. Hence, in relation to ErrT , we do not observe a new set of outcome values, y,
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to each xi, but instead only have the outcome values within the training set, and so the notation

Ey[·] is used.

For squared-error loss, the average optimism is derived in the Appendix section A.1, and it is

given as

ω =
2

N

N∑
i=1

Cov(ŷi, yi). (3.10)

Thus, the amount by which err underestimates the true error depends on how strongly a single

observation yi affects its own prediction.

From Equation (3.8) and the estimate of optimism in Equation (3.10) an obvious estimate of

Errin is

Ey [Errin] = Ey [err] + ω. (3.11)

This expression simplifies if ŷi is obtained by a linear fit with d inputs [Friedman et al., 2009],

which reflects the degree of freedom in the model. For the additive error model Y = f(X) + ε

then ω = 2
N dσ

2
ε , and so

Ey [Errin] = Ey [err] + 2
d

N
σ2
ε (3.12)

Thus, we can see that the optimism increases linearly with the number of inputs, but decreases

as the training sample size increases. A number of different, frequently applied, methods rely on

Equation (3.11), and they will be discussed in the next section.

3.3.1 Estimates of in-sample prediction error

The general form of the in-sample estimate is

Êrrin = err + ω̂. (3.13)

When d parameters are fit under squared-error loss, we have a version of the so-called Mallows’

Cp statistic

Cp = err + 2
d

N
σ̂2
ε ,

where σ̂2
ε is an estimate of the noise variance, which should be obtained from a low-bias model

[Friedman et al., 2009]. Motivated by the unfortunate subjective judgment required in the for-
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mulation of σ̂2
ε , Akaike [1974] proposed another, now frequently applied, method of estimating

Errin: Akaike information criterion (AIC), which is more generally applicable than Mallows’ Cp.
AIC relies on a asymptotic relation for the average log-likelihood of all observations of Y similar

to Equation (3.12). When N is increased indefinitely, the average tends, with probability 1, to

1

N

N∑
i=1

log[Pθ̂(yi)] =

∫
P(Y ) · log[Pθ̂(Y )] · dY

where log[Pθ̂(Y )] is a maximised log-likelihood of a parametric model, and P(Y ) = Pθ0(Y ) is

the assumed to be the true density of Y in the same parametric family with θ0 as the true

parameter values, and the existence of the integral is assumed. The difference I[P(Y );Pθ(Y )] =
1
N

∑N
i=1 log[P(yi)] − 1

N

∑N
i=1 log[Pθ(yi)] is known as the Kullback-Leibler mean information for

discrimination between P(Y ) and Pθ(Y ) and is positive unless P(yi) = Pθ(yi) holds almost

everywhere, which is known as Gibbs inequality [Akaike, 1974]. Under the situation where

P(Y ) = Pθ(Y ), then a perturbation in I[P(Y );Pθ(Y ) +4] admits an approximation

I[P(Y );P(Y ) +4] ≈ 1

2

[
(4θ)TJ(θ)(4θ)

]
, (3.14)

where J(θ) is the Fisher information matrix. Notice also that if the likelihood of θ is restricted

to lie in a lower dimensional subspace than the true θ0, and so cannot encompass it, then for

the maximum likelihood estimate θ̂ it can be shown that N
[
(θ̂ − θ)J(θ)(θ̂ − θ)

]
for sufficiently

large N is approximated under certain regularity conditions by a chi-squared distribution with

the degree of freedom equal to the dimension of the restricted parameter space, d. Thus, it holds

that

2NE
[
I[Pθ0(Y );Pθ̂(Y )]

]
≈ N

[
(θ − θ0)TJ(θ)(θ − θ0)

]
+ d

Moreover, using 2
(∑N

i=1 log [P(Yi)]−
∑N

i=1 log
[
Pθ̂(yi)

])
as an estimate ofN

[
(θ − θ0)TJ(θ)(θ − θ0)

]
,

and adding d to the approximation in order to adjust for the downward bias introduced by

the replacement of θ with θ̂, the maximum likelihood estimate, yields the result when isolat-

ing
∑N

i=1 log [P(Yi)]. Hence, with the objective of minimising the Kullback-Leibler divergence

between our model, assuming the correct model is within our specification, and the true data

generating process, AIC is defined as

AIC ≡ − 2

N

N∑
i=1

log
[
Pθ̂(yi)

]
+ 2 · d

N
. (3.15)

For the Gaussian model and with variance σ2
ε = σ̂2

ε assumed known, the AIC is equivalent to

Mallows’ Cp.
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For non-linear and other complex models, we need to replace d by some measure of model

complexity, and these are discussed in Subsection 3.4. If we want to use this estimate, then say

we have a set of models fα(X) indexed by a tuning parameter α, and denote the training error

by err(α) and the number of parameters for each model by d(α). Then for this set of models we

have

AIC(α) = err(α) + 2 · d(α)

N
σ̂2
ε .

The function AIC(α) is then an estimate of the test error curve, and we can tune α to find an α̂

that minimises it [Friedman et al., 2009]. A note of caution is that if we have a total of p possible

input variables, and we choose the best-fitting linear model with d < p inputs, the optimism will

exceed the otherwise correctly estimated optimism of (2d/N)σ2
ε , because the effective number of

parameters fit is more than d [Friedman et al., 2009].

Other methods of model selection are featured in Subsection A.2 of the appendix. Here we

also see the Bayesian Information Criterion (BIC), that, although not motivated by the estima-

tion of Errin, is similar to AIC. Instead, BIC is motivated by the posterior odds of two competing

models, which is a very Bayesian way to look at the problem of model selection. Unlike AIC, BIC

is asymptotically consistent, and for N > e2 ≈ 7.4 BIC tends to penalise complex models more

heavily than AIC. However, for finite samples, BIC often chooses models that are too simple,

because of its heavy penalty on complexity [Friedman et al., 2009].

Now we will shift the focus to the out-of-sample prediction error in the next subsections.

3.3.2 Setting some data aside for testing purposes

If we are in a data-rich situation, the best approach is to randomly divide the data set into three

parts: a training set, a validation set, and a test set [Friedman et al., 2009]. The training set is

used to fit the models; the validation set is used to estimate prediction error for model selection;

the test set is used for assessment of the generalisation error of the final chosen model. It is diffi-

cult to give a general rule on how to choose the number of observations in each of the three parts,

as this depends on the signal-to-noise ratio in the data and the training sample size. However, a

typical split is 50% for training, and 25% each for validation and testing [Friedman et al., 2009].

Next are some methods of efficient re-use of the sample in order to both estimate the model,

tune the parameters and estimate the prediction error. Besides their use in model selection, it is

also examined to what extent these methods provide a reliable error of the final chosen model as
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these would most likely be downward biased estimates.

3.3.3 Bootstrapping

Bootstrapping is a familiar tool for assessing the statistical errors of any model. It relies on

sampling with replacement, and the idea is to create an approximating distribution for the para-

meter of interest by assuming the sample is the whole population, and then iteratively sample with

replacement from that distribution [Efron, 1979]. For example, say we create B = 100 samples of

the same size as the original sample from our original sample, we can estimate a model f(X; θ̂)

B times. The distribution of the models’ predictions can be used to make statistical inference

about the prediction accuracy, and the distribution of the parameter estimates of the model fits

can be used to make statistical inference about their distributions. Of course, as a means for

estimating the conditional error ErrT , the method might be underestimating the actual error,

as individual predictions can be helping to predict themselves; a positive optimism as shown in

Equation (3.10). This problem exists in any use of this method, or any efficient re-sampling

scheme, but although it provides inferior model assessment qualities, it has some good qualities

when it comes to smaller samples and overall model selection. More formally, we follow Friedman

et al. [2009] to state the estimate of the error given by bootstrapping

Êrrboot =
1

B

1

N

B∑
b=1

N∑
i=1

L(yi, f̂
∗b(xi)), (3.16)

where f̂∗b(xi) is the predicted value at xi from the model fitted to the bth bootstrap data set.

As means of mitigating the problem of positive optimism in the bootstrapping re-sampling

scheme, there are several corrections to be made in the bootstrapping scheme. Firstly, the leave-

one-out bootstrap estimate keeps track of all those samples drawn that do not include observations

i, and then use them to estimate the prediction error of observation i. Secondly, the average num-

ber of distinct observations in each bootstrap sample is 0.632·N which creates a bias; the ”.632

estimator” is designed to alleviate this bias and does so by a weighted average of err and the

leave-one-out bootstrap estimate. Further information, including the definition of these estim-

ates, can be found in the Appendix A.3.

In contrast, cross-validation explicitly uses non-overlapping data for the training and test samples,

although when selecting and tuning the model this distinction becomes less apparent. The method

of cross-validation is described in the next subsection.
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3.3.4 Cross-validation

According to Friedman et al. [2009], cross-validation is the simplest and most widely used method

of estimating prediction error. Originally, Stone [1974] creates N data sets by leaving one ob-

servation of the original data set out of each data set, and then fits the model on each data

set to predict the left out observation. This method is subsequently being named leave-one-out

cross-validation (LOOCV). From those prediction errors, Stone [1974] can make an estimate of

the average generalisation error and therefore tune the shrinkage parameter. Golub et al. [1979]

motivate the invention of generalised cross-validation by the non-necessity of estimating σ̂2
ε , but

also recognises some sensitivities to extreme values in Allen’s PRESS (similar to LOOCV in Stone

[1974]). Golub et al. [1979] then derive a rotation-invariant form of cross-validation, which, simply

put, is a reweighting of the errors in each data set used to derive the statistic to tune from.

However, although it is nice that LOOCV is approximately unbiased for the true (expected)

prediction error, this means that it can have high variance since the N ”training sets” are so

similar to one another. Instead, K-fold cross-validation splits the data into K non-overlapping,

roughly equal-sized parts, and fits the model to K − 1 parts of the data to predict the kth part

for k = 1, 2, . . .K. We are then able to average these predictions over the K parts to give an

estimate of prediction error [Geisser, 1975]. Following Friedman et al. [2009], we formally let

κ : {1, . . . , N} 7→ {1, . . .K} be an indexing function indicating the partition to which observation

i is allocated to by randomisation. We denote the fitted function with the kth part removed as

f̂−k(x), and we can define the cross-validation estimate of prediction error as

CVK(f̂) =
1

N

N∑
i=1

L(yi, f̂
κ(i)(xi)). (3.17)

Here we are able to decrease variance, but we also increase bias. So in the choice of K, we should

have this trade-off in mind as suggested in Kohavi et al. [1995]. Notice, also, that the case K = N

is the LOOCV cross-validation estimate. Friedman et al. [2009] compare different values of K

to see how well they estimate Err and ErrT respectively. They find that CV10 estimates both

Err and ErrT better than LOOCV, and that both are approximately unbiased estimates of Err

but fail to predict the generalisation error very well. Furthermore, they suggest that K = 5 or

K = 10 are both common choices, and that one should look at variances between the data sets to

pick one; the higher the variance between data sets, the higher the number of folds you choose.

In order to make the methods of estimating prediction error without re-sampling relevant even in

highly complex and non-linear model frameworks, the next subsection is dedicated to the effective
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number of parameters used.

3.4 The effective number of parameters

The concept of ”number of parameters” can be generalised, which is especially necessary for

models where regularisation is used in the fitting [Friedman et al., 2009]. Firstly, within linear

model frameworks which include features based on a derived basis set or smoothing methods

using quadratic shrinkage (see Subsection 4.1), we can write a linear fitting as

ŷ = Sy,

where S is a N×N matrix depending on the input vectors xi but not on yi. The effective number

of parameters is then defined as

df(S) = trace(S),

e.g. the sum of the diagonal elements of S. If Y arises from an additive-error model Y = f(X)+ε

with ε ∼ N(0, σ2
ε ), then one can show that

∑N
i=1 Cov(ŷi, yi) = trace(S)σ2

ε , which resembles the

relation used in Equation (3.12) but with trace(S) in place of d [Friedman et al., 2009]. This

motivates the more general definition

df(ŷ) =

∑N
i=1 Cov(ŷi, yi)

σ2
ε

.

In the case of models like neural networks described in Subsection 5.3, where we minimise

an error function R(w) subject to weight decay regularisation α
∑

mw
2
m, the effective number of

parameters has the form

df(α) =
M∑
m=1

θm
θm + α

,

where θm are the eigenvalues of the Hessian matrix ∂2R(w)/∂w∂wT . The result follows from a

second-order Taylor approximation to the error function at the solution [Bishop, 1995].

This type of measurement of the effective number of parameters is very useful, but the method

described here is not fully general, as it is limited to a narrow class of models. The Vapnik-

Chervonenkis (VC) theory provides such a general measure of complexity. It gives associated

analytical bounds on the optimism, and although it will not be implemented in this thesis and

has its hardships with regression, it is worthwhile to describe in the next subsection.
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3.4.1 Vapnik-Chervonenkis Dimension

In order to follow Devroye et al. [2013] in showing an influential result in VC-theory using the

VC-dimension in the next subsection, we must start out by changing our mindset from function

classes, F , to collections of measurable sets, A. We start with a formal definition of a shatter

coefficient.

Definition 1. (Shatter coefficient)

Let A be a collection of measurable sets. Then for any arbitrary set C ⊂ X ∈ {Rd}N , let

NA(C) be the number of different sets in {C ∩ A;A ∈ A}, the nth shatter coefficient of A is

s(A, N) = max
C∈(Rd)N

NA(C)

Now, less formally, we note that the maximal number of shatter coefficients is bounded from

above by s(A, N) ≤ 2N , which makes sense in a combinatorial way since it is the maximal number

of combinations one can pick out either 1 or 0. Then, if s(A, k) < 2k for some integer k, then

s(A, N) < 2N for all N > k, and so if we can find a smaller number of different sets in A to

shatter C, then the maximal number of shatter coefficients is clearly smaller than 2N . The VC-

dimension is then the largest integer k ≥ 1 for which s(A, k) = 2k is denoted VCdim(A). Devroye

et al. [2013] also states that, by definition, if s(A, N) = 2N ∀ N , then VCdim(A) = ∞. Having

defined the shatter coefficient and the VC-dimension using set-families, we turn our attention to

the VC-dimension in function classes.

Suppose we have a class of functions F = {f(α) : X 7→ Y} indexed by a parameter vector α,

with X ∈ Rp. Assume for now that f(·) is an indicator function so that it takes either the value

of 0 or 1. If α = (α0, α1) and f(·) is the linear indicator function I(α0 + αT1 x > 0), then it seems

reasonable to say that the complexity of the class f(·) is the number of parameters p+1 [Friedman

et al., 2009]. But if we instead consider another function f(·) ∈ F , where f(α) = I(sinα · x) and

α is a scalar coefficient, then, because of the wiggly form of the function that gets even rougher as

the frequency, α, increases, we cannot conclude that this function is less complex than the linear

indicator function. This is the reasoning that leads us to the definition of the VC-dimension

within function classes, where the translation of sets to function classes is straightforward: a

given classification function f(·) with parameter vector θ is said to shatter a set C ⊂ X if, for all

assignments of classifications to those points, there exist a θ such that the function f(·) makes

no errors [Friedman et al., 2009]. The VC-dimension is then defined as:

Definition 2. (VC-dimension)

The VC-dimension of the class F is defined to be the largest size of a set C ⊂ X that can

be shattered by members of F . If F can shatter sets of arbitrarily large size we say that F has
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infinite VC-dimension.

That is, as an example, say F is a class of threshold function over R, and say we have an

arbitrary set of one point C = {c1}, then F shatters C; and therefore the VC-dimension of F
is greater than or equal to 1 (VCdim(F) ≥ 1). But we can also show that for an arbitrary set

C = {c1, c2} with c1 ≤ c2, F does not shatter C, where we must note the importance of the

possible equality of c1 and c2. We can therefore conclude that VCdim(F) = 1 [Shalev-Shwartz

and Ben-David, 2014].

Next, we generalise the concept of VC-dimension to real-valued, and therefore unbounded,

loss functions. Consider a set of real-valued functions L(Y, f̂(X)) bounded by some constants

A ≤ L(Y, f̂(X)) ≤ B. For each function, we can form the indicator function showing whether

L(Y, f̂(X)) is greater or smaller than some level β (A ≤ β ≤ B):

I(y,Z;β) = I[L(Y, f̂(X))− β > 0].

The VC-dimension of a set of real-valued functions L(Y, f̂(X)) is, by definition, equal to the VC-

dimension of the set of indicator functions with parameter β [Evgeniou et al., 2000, Cherkassky

and Mulier, 2007]. According to personal communication between Cherkassky, Mulier and Vapnik,

one can use

h ≈ hf ,

where h is the VC-dimension of L(Y, f̂(X)) and hf is the VC-dimension of f̂(X), for practical

regression applications using squared-error loss [Cherkassky and Mulier, 2007].

After having established the notion of the VC-dimension, we can use it construct an estimate

of the generalisation prediction error in different ways. One can prove results about the optimism

of the training error when using a class of functions and within specific loss function. The next

subsection is dedicated to these bounds and discusses another method of model selection based

on the bounds.

3.5 Upper bounds on the rate of uniform convergence

To start this section off, we look at the beginning of VC-theory which is structured around

the idea of empirical risk minimisation (ERM)13 mostly developed by Vapnik [Cherkassky and

Mulier, 2007]. The bounds evaluate the difference between the (unknown) true risk and the known

empirical risk as a function of the sample size N , properties of the unknown distribution P(Z),

13The risk part of ERM is another way to view loss. In fact, it is the integral with respect to the joint distribution
function of the iid realisation of the outcome variable and the predictors of the loss function.
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properties of the loss function and properties of approximating functions [Cherkassky and Mulier,

2007]. Within regression the bounds on the true function or the additive noise are not known, so

we cannot provide finite bounds for such loss function as there is always a small probability of

observing enormous output values. This is why the first developments of generalisation bounds

were within classification and primarily binary classification. An example of such a bound for

binary classification, which draws on a result in the original paper Vapnik and Chervonenkis

[1971], is given in [Devroye et al., 2013]. It gives some general bounds on sums of random

variables in specific sets. The theorem is stated as such: for any probability measure of the

random variables P(Z) and class of sets A, and for any n and ε > 0,

P

{
sup
A∈A

∣∣∣∣ 1

N

N∑
i=1

I(Zi∈A) − P(Z ∈ A)

∣∣∣∣ > ε

}
≤ 8s(A, N)e−Nε

2/32 (3.18)

where Z1, . . . , ZN are independent identically distributed random variables in Rd. It is a general-

isation of the Glivenko-Cantelli theorem, stating uniform almost sure convergence of the empirical

distribution function, the one we have estimated using our data within a specific function, to the

true one [Devroye et al., 2013]. Thus, this theorem gives us an upper bound within a certain

probability threshold on the loss incurred from fitting our model rather than having the true data

generating process.

However, for real-valued loss functions, we need a description of the tails of the distribution,

namely the probability of observing large values. For distributions with so-called ”light tails”,

a fast rate of convergence is possible. For such a distribution, the bounds on generalisation are

given in Cherkassky and Mulier [2007]. They find that the bound that holds with probability at

least 1 − η simultaneously for all loss functions (including the one that minimises the empirical

risk) and all members of F is

ErrT ≤
err

(1− c
√
ε)+

(3.19)

where

ε = a1
h[log(a2N/h) + 1]− log(η/4)

N
,

and

0 < a1 ≤ 4, 0 < a2 ≤ 2,

and also VCdim(F) = h. Furthermore, c depends on the tails of the distribution, and for most

practical regression applications we can safely assume c = 1 [Cherkassky and Mulier, 2007]. For

regression they suggest practical values of the constants a1 = a2 = 1. They also give an alternative
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practical bound for regression, arguing that the confidence level 1 − η should depend positively

on the sample size N , and using the values of the constants as given before:

ErrT ≤ err

(
1−

√
ρ− ρlogρ+

logN

2N

)−1

+

,

where ρ = h
N , which is free of tuning constants. These bounds suggest that optimism increases

with complexity (h) and decreases with N , which is what we would have thought a priori. The

result given in Equation 3.19 is strong; rather than given the expected optimism for each fixed

function, they give probabilistic upper bounds for all functions in a class F , and hence allow for

searching over the class [Friedman et al., 2009]. It could be another criterion for model selection to

pick the model with the least probabilistic upper bound of the optimism, which is exactly what

Vapnik’s structural risk minimisation of Vapnik and Chervonenkis [1974] does. Furthermore,

Cherkassky and Mulier [2007] note that in situations when the VC-dimension can be accurately

estimated, the analytic bounds of SRM may provide better complexity control than resampling

approaches. However, as found in [Friedman et al., 2009], this often is not the case, and so this

upper bound view of complexity control will not be pursued in this thesis.
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4 Reducing Uncertainty and Variance

The former section described methods of estimating generalisation error or other forms of error for

model selection, which are both relevant within functional classes and outside functional classes.

This section will show us how to use that information to regularise and shrink our models to give

better generalisation abilities and possibly to make a simpler (more parsimonious) model. The

separate goal of a simpler model stems partly from the desire to make an interpretable model,

but also for its own sake. This is something that is often motivated by Occam’s razor (such as in

Cherkassky and Mulier [2007], Schapire and Freund [2012]), but to do it differently let us follow

the tale of the Columbus egg: after having returned from discovering the Americas, Columbus was

told that the discovery was inevitable and no great accomplishment. After hearing this Columbus

challenges his critics to make an egg stand on its tip. His critics find this task hard and give up,

and then Columbus does so himself by tapping the egg on the table to flatten its tip and thereby

make it stand. The analogy to our problem is, therefore, that we should not necessarily seek to

make the problem harder and more complex if a simpler solution exists. The section will also

consider ways of reducing model uncertainty, such as to average models from several functional

classes to enhance predictive accuracy. Furthermore, this section will introduce Bayesian methods

as alternative means of model averaging according to the posterior probability of the models.

4.1 Regularisation

The regularisation approach provides a formalism for adjusting the complexity of approximating

functions to fit finite data. It takes starting point in a specific adaptive (flexible) model and

then by reducing the number of parameters, by shrinking them, by constraining the optimisation

procedure, or by model specific regularisations seeking to reduce the variance of the predictions

for better generalisation ability. The model specific regularisations can be choosing the number

of hidden layers (in a neural network) or picking the number of nearest neighbours (K-nearest

neighbours). As an example, one form of this is to retain only a subset of the predictors and dis-

carding the rest. This is the way best subset selection produces a model that is both interpretable

and possibly has lower prediction error than a full model. However, also here there is a price

paid in variance for selecting the best subset of each size of each model; and so other methods

constraining the ability to test all models against each other are made - such as forward-stepwise

and forward-stagewise regression. Although we will not use or go more in-depth with these mod-

els, the procedure of forward-stepwise regression will be briefly explained: first, it starts with

the intercept at the mean of the outcome variable and all other parameters at zero, and then

sequentially add into the model the predictor that improves fit the most [Friedman et al., 2009].
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This procedure of only looking at what improves fit the most in the next step of the algorithm

grants it the general adjective of being a greedy algorithm.

Within the generalised linear model framework, where we as usually seek an estimator that

minimises a specified loss function, we can apply a penalty term

L(y, f(X;β)) + λJ(β),

where λ ≥ 0 is a tuning parameter, J(·) is the penalty functional, and β ∈ Rp contains all of our

parameter estimates besides the intercept. Here we can fit the model using different values of

the tuning parameter and choose between the different models fλ(X; β̂) based on the predictive

accuracy as estimated in the previous section. A very general form of regularisation is the `q

penalty function

J(β) = ||β||qq,

where || · ||qq is the q-norm to the qth power, i.e. ||β||q =
(∑p

j=1 |βj |q
)1/q

. This penalisation term

leads to the minimisation problem for β giving the bridge estimate

β̃ = arg min
β

{
L(y, f(X;β)) + λ||β||qq

}
. (4.1)

To see how different values of q affect the values of the parameters in the case of two inputs,

consider Figure 4.1 from Friedman et al. [2009] that show the contours of a constant value of∑2
j=1 |βj |q.

Figure 4.1: Contours of a constant value of
∑2

j=1 |βj |q

Consider q = 1 as an example, here we are more likely to shrink the coefficients a lot or set

them equal to zero compared with q = 2, and with q < 1 we are more and more likely to set

variables to zero. The case of q = 0 corresponds to variable subset selection, which selects a

subset of the total number of possible variables to keep and set the rest to zero, and so creates a

sparse model. We can also view these estimates as Bayes estimates using different prior densities
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yielding the same results14. In general format, the bridge estimator can be viewed as the Bayes

posterior mode under the prior P(β|λ; q) ∝ e(−λ||β||qq), where q = 1 corresponds to a Gaussian prior

and the q = 1 corresponds to a Laplacian prior under relevant scaling of the tuning parameter,

λ, which can be seen in Appendix A.4.

Frank and Friedman [1993] are credited with the invention of the bridge regression technique,

while they did not solve for the estimator for any given q, they suggested that it would be desirable

to optimise the parameter q [Fu, 1998].

Although it is considered estimating q from data, it might also seem counterproductive, as

the methods are deployed to decrease variance, and estimating q will definitely increase variance,

and so Zou and Hastie [2005] find that it does not improve predictions compared to q = 1 or

q = 2. These two frequently used special cases, namely q ∈ {1, 2}, is what we will look into in

the following two subsections. In Subsection 4.1.3, we will also briefly discuss a combination of

the two.

4.1.1 Ridge regression (`2 penalty)

First, let us consider the ridge regression of Hoerl and Kennard [1970], who employ the `2 penalty

term, and let us also consider squared-error loss within a multivariate regression framework as

they do, then we have the following problem

β̂ridge = arg min
β

{
((y − 1Nβ0)−Xβ)T ((y − 1Nβ0)−Xβ) + λ||β||22

}
, (4.2)

where 1N indicates a vector of ones with length N . This minimisation problem admits the neat

closed form solution

β̂ridge =
(
XTX + Ipλ

)−1
XT y, (4.3)

where Ip is the p×p identity matrix. Here we clearly see the distinction that shrinks the estimates

compared to the usual OLS estimate

β̂ols =
(
XTX

)−1
XT y.

Notice how in Equation (4.2) β0 is not contained in the penalty functional; penalisation of the

intercept would make the procedure depend on the origin chosen for y [Friedman et al., 2009].

Also, a minor problem with ridge regression is that the estimates of β are not scale invariant - if

we measure weight in kilogram rather than gram our standard OLS estimate would be a factor

14When using either the mean or mode of the posterior distribution of the variable in the Bayes estimate.
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1000 larger, but if we use ridge regression, we will penalise the estimate measured in kilogram

much more. A simple fix to this problem is to standardize each of the inputs such that each

input is normally distributed with zero mean and unit variance, i.e. N (0, 1). When we have

standardized inputs, we can estimate β0 by ȳ, the mean of the outcome variable.

In the case of orthonormal inputs (independence between the independent variables15), we

have a simple relationship between the ridge estimate and the OLS estimate

β̂ridge =
β̂ols

1 + λ
,

where the effect of adding the penalisation is easily seen. We can also see that ridge regression

does not produce sparse models, as it does not shrink estimators to zero. However, it still reduces

the effective degrees of freedom defined in Subsection 3.4 as exemplified in the following figure

found in Friedman et al. [2009].

Figure 4.2: Profiles of ridge coefficients as the tuning parameter λ is varied. Coefficients are plotted
against df(λ), the effective degrees of freedom. A vertical line is drawn at df = 5, the value chosen by
cross-validation.

Another frequently deployed penalty function is the Least Absolute Shrinkage and Selection

Operator (LASSO), which does make a more sparse model. This type of penalty will be the

15One could also make a singular value decomposition of the input matrix with a relevant rescaling to induce
orthonormality and find a similar relationship between ridge regression and OLS, where the individual β̂ridge estim-
ate is scaled by the magnitude of the singular value dj corresponding to their (normalised) principal component uj

(vector), hence Xβ̂ridge =
∑p
j=1 uj

d2j
d2j+λ

uTj y. To compare, the estimate from OLS would be Xβ̂ridge =
∑p
j=1 uju

T
j y.
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subject of the next subsection.

4.1.2 LASSO regression (`1 penalty)

The formulation that follows directly from deploying q = 1 from Equation 4.1 is the LASSO

regression of Tibshirani [1996]. The estimates are the ones that solve

β̂LASSO = arg min
β

{
((y − 1Nβ0)−Xβ)T ((y − 1Nβ0)−Xβ) + λ||β||1

}
. (4.4)

The latter constraint now makes the problem non-differentiable, and so we cannot find a closed

form solution. But there are several means of estimating β efficiently, such as Least Angle

Regression (LAR) of Efron et al. [2004], that actually computes the entire LASSO path (for the

different values of the tuning parameter λ) in an extremely efficient manner [Friedman et al.,

2009].

Just as for ridge regression, we need to notice the exclusion of β0 in the penalty term and

the scaling problem. Instead of picking out variables to keep in the model as in subset selection,

LASSO translates each coefficient by a constant factor λ and then truncating at zero. This is

called ”soft thresholding” in contrast to the ”hard thresholding” of best-subset selection.

When Tibshirani [1996] introduced the LASSO, he motivated the development by comparing

the sparsity of the model with ridge regression and found that the LASSO gives some more inter-

pretable models that enjoy some of the same favourable properties. However, the favourability

might extend beyond that. Friedman et al. [2009] consider two scenarios; either we are in a

sparse scenario, such that in the true model only a small number of coefficients are nonzero; or

in a dense scenario, such as if the coefficients are draws from a Gaussian distribution. In the first

scenario, `1 penalty would give the best model fit, and in the second scenario `2 penalty would

give the best model fit. However, in the sparse scenario, only `1 penalty yields a good model, but

in the adverse scenario `1 does not do too bad - it is more robust towards different types of data.

The use of `1 penalty, therefore, follows what has come to be known as the ”bet on sparsity”

principle for high-dimensional problems: use a procedure that does well in sparse problems since

no procedure does well in dense problems.

4.1.3 Elastic net regression

Zou and Hastie [2005] introduce the elastic net, which is a compromise between ridge regression

and LASSO regression. They claim that elastic net often outperforms the LASSO although enjoy-

ing a similar sparsity of representation. The second nicety of this formulation is the computational

34 of 80



Reducing Uncertainty and Variance

tractability; it has considerable computational advantages over the `q penalties [Friedman et al.,

2009]. The formulation of the elastic net is as such

β̂elastic net = arg min
β

{
((y − 1Nβ0)−Xβ)T ((y − 1Nβ0)−Xβ) + λ

(
α||β||22 + (1− α)||β||1

)}
.

(4.5)

Thus the penalty term is a convex combination of both the LASSO and the ridge penalties.

They find that the problem can be turned into an equivalent LASSO problem on augmented

data. They, then, owe the computational tractability to the LAR algorithm previously discussed,

as they can leverage its ability to estimate the LASSO regression efficiently. Furthermore, they

find that solving the problem as stated will, although still having features of both LASSO and

ridge regression, make the βs appear to incur double shrinkage. However, they find that this

solution will do well in situations that are similar to either ridge or LASSO, but not both. The

elastic net also has a Bayesian interpretation. The prior here is rather unusual, but it is simply

the compromise between Gaussian and Laplacian priors of ridge and LASSO regression,

P(β|λ; q, α) ∝ e(−λ[α||β||22)+(1−α)||β||1]).

According to Zou and Hastie [2005], they solve the double shrinkage problem by rescaling the

solution to β by 1+λ2, which comes from a reformulation of Equation 4.5 and the defined relation

α = λ2/(λ1 + λ2). λ2 was the ridge penalty coefficient while λ1 was the LASSO coefficient in the

reformulation. Zou and Hastie [2005] see their contribution as a generalisation of the LASSO,

as they still want to have the feature of producing a sparse solution. They explain that bridge

regression with q > 1 always keeps all variables in the regression, and as does ridge. So why is

the elastic net superior to the LASSO? Especially for estimation purposes, cases where coefficient

estimates are more important than prediction, the elastic net has better qualities when it comes

to grouped variables than LASSO. Grouped variables are situations where some variables are

highly correlated, which is increasingly important in large p, small N problems. In the extreme

case, elastic net succeeds in yielding equal coefficient estimates for highly correlated data, while

LASSO does not - LASSO does not even have a unique solution [Zou and Hastie, 2005]. This

property makes the elastic net less relevant for prediction, although still being similar to both

LASSO and ridge.
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4.2 Bagging

The name bagging refers to bootstrap aggregation, and the technique itself is, therefore, as the

name suggests, a method to aggregate models based on bootstraps to improve the prediction

itself. The method is suggested by Leo Breiman in Breiman [1996] and works by averaging the

prediction over a collection of bootstrap samples in order to reduce model uncertainty. The

estimate is found by fitting the model to each bootstrap sample Z∗b, b = 1, 2, ..., B, where Z

contains the training data consisting of both input and outcome variables from the training set

T to have B different fitted models f̂∗b(X), b = 1, 2, ..., B. We then average over the models to

have the bagging estimate

f̂bag(X) =
1

N

N∑
i=1

f̂∗b(xi) =
1

N

1

B

N∑
i=1

B∑
b=1

f̂∗b(xi). (4.6)

Following Breiman [1996], we can also show the procedure should work if we assume that each

sample Z∗b is drawn from the ”true” joint probability distribution P. Now, with that assumption

and using some simpler notation, when B →∞ then we have

f̂bag(x) = E
[
f̂(X)|T

]
, (4.7)

and we have the expected squared error of a fitted model of the training set as

E
[
Y − f̂(X)|T

]2
= y2 − 2yE

[
f̂(X)|T

]
+ E

[
f̂(X)2|T

]
.

Using Equation (4.7) and Jensen’s inequality we have that

E
[
Y − f̂(X)|T

]2
≥ y2 − 2yE

[
f̂(X)|T

]
+ E

[
f̂(X)|T

]2

E
[
Y − f̂(X)|T

]2
≥
[
y − f̂bag(x)

]2
. (4.8)

Integrating both sides of equation 4.8 over P, we get that the mean-squared error of f̂bag(X) is

lower than the mean-squared error averaged over T of f̂(X). How much lower depends on how

unequal the Jensen’s inequality turns out to be. Here the effect of model uncertainty is clear.

If f̂(X) does not change too much with replicate T , the two sides will be nearly equal, and

aggregation will not help.

The trade-off from using a bagging estimate compared to an overall estimate is that Z∗b is

not drawn from the underlying probability distribution, P, from which T is drawn, but rather
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PT 16, a distribution that concentrates mass 1/N at each set of observed input-outcome variable

relations (yi, xi) ∈ T . So if the procedure is unstable, then we can improve prediction through

bagging, but if the procedure is stable then f̂bag(X) will not be as accurate as f̂(X) as the latter

is drawn from P. Furthermore, when we bag a model any simple structure in the model is lost,

which is clearly a drawback for interpretation [Friedman et al., 2009].

4.3 Bumping

Bumping is a related bootstrap-based method. However, instead of using bootstrapping for

model averaging, it uses it as a stochastic model search mechanism. Tibshirani and Knight

[1999], who introduced the method, cite Breiman [1996] for his development of the bagging

procedure, but wants to keep the interpretability of the model (where possible17), while using

the bootstrapping procedure to get different model specifications and to be able to choose from

them. This will preserve the structure of the estimator while still inducing stability. This type of

stochastic optimisation procedure helps us from ending up in a bad local minimum, and according

to Tibshirani and Knight [1999], most adaptive procedures only find local minima. In their

convention, the model based on the full training set is included in the search, so it is not possible

for the model to find a worse local minimum than the one obtained from the training set.

4.4 Stacking

Stacked generalisation is a method of combining models to give a better predictive accuracy than

any single model, just as in bagging. However, instead of building upon the same model type

and varying the coefficients in said model, we can stack them according to estimated optimal

weights adjusted for the complexity within the individual models. Furthermore, it does not

necessarily build upon bootstrapping of the training set, but instead it uses cross-validation. In

fact, Wolpert [1992] believes that it can be seen as a more sophisticated version of cross-validation

since it combines individual models using cross-validation rather than pick among them.

It can also be seen to be an extension of other model combinations techniques, which assumes

the training set is the population data set and combine models to give minimal in-sample error.

The extension is on the part of the cross-validatory procedure of obtaining minimal generalisation

error.

The stacking estimate of the weights in a linear model using LOOCV is

16PT is called a bootstrap approximation to P.
17Tibshirani and Knight [1999] name neural network models as an exception as their structure does not give

easily interpretable results in either case.
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ŵstack = argmin
w

1

N

N∑
i=1

[
yi −

M∑
m=1

wmf̂
−i
m (xi)

]2

,

where f̂−im (xi) is the mth fitted model on the training set with the ith observation removed.

The final prediction is
∑M

m=1 ŵ
stack
m f̂m(X). Therefore, by using the cross-validated predictions

f̂−im (X), stacking avoids giving unfairly high weight to models with higher complexity [Friedman

et al., 2009].

4.5 Bayesian methods

We have already seen how Bayesian statistics can be used regularise models under certain prior

distributions of the parameter estimates. Likewise, we could also show that bootstrapping is

another way to sample estimates from the posterior distribution under uninformative priors. We

even motivated the methodology section by a Bayesian example and used BIC as a model selection

criterion. In this section, some space is devoted to introducing Bayesian statistics as a method of

sampling from the posterior predictive distribution as well as for model combinations.

4.5.1 Bayesian in prediction

At first, let us specify a sampling model P(Z|θ) for our data Z given our parameters θ and a prior

distribution for the parameters P(θ) reflecting our knowledge about θ before we see the data. We

can then compute the posterior distribution

P(θ|Z) =
P(Z|θ)P(θ)∫
P(Z|θ)P(θ)dθ

. (4.9)

For most Bayesian predictions, it is this knowledgeable approach to our prior distribution that

provides the real benefit of the use of Bayesian methods18, but some of the supervised learning

techniques are too complex, and so we cannot possibly claim with a straight face that our priors

are selected because of the need to capture our prior belief about the problem [Neal, 2012].

However, just as in the cases of regularisation we saw earlier, different priors have been applied in

the complex models with good results. For example, MacKay [1992] gives the weights and biases

of a neural networks Gaussian prior distributions and lets the variance of the Gaussian prior be

a hyperparameter19, which allows the model to adapt whatever degree of smoothness indicated

18Besides the fact that maximum likelihood methods find the mode of the parameters and uses these for pre-
diction, which does not necessarily coincide with mean of the posterior distribution of a new observation as in
Bayesian prediction.

19Which in the machine learning terminology means a parameter whose value is set before the learning process
begins, but in the Bayesian terminology means a parameter of the prior distribution.
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by the data.

Now, the posterior distribution of the parameters provides the basis for predicting the value

of a future observation znew via the predictive distribution

P(znew|Z) =

∫
P(znew|θ)P(θ|Z)dθ, (4.10)

where we recognise P(znew|θ) as being the so-called likelihood that we also know as the objective to

maximise in frequentist maximum likelihood procedures. The usual maximum likelihood estimate

of the data density would then be P(znew|θ̂ML), and thus does not account for the uncertainty in

estimating θ.

This method is theoretically convincing, but for a long period of time the integral in Equation

(4.9) was intractable for many types of models, as noted by e.g. Albert and Chib [1993] and

Zellner and Rossi [1984]. The explosion in computer power available has now made these sorts of

integrals relatively easy to compute via computationally intensive simulation methods [Jackman,

2009].

Usually, we restate the posterior distribution in Equation (4.9) as

P(θ|Z) ∝ P(Z|θ)P(θ) (4.11)

where the constant of proportionality is

[∫
P(Z|θ)P(θ)dθ

]−1

.

The constant of proportionality has the function of ensuring that the posterior density is a proper

probability distribution, i.e. that it integrates to one. As Equation (4.11) is analytically intract-

able, we need to make use of Monte Carlo simulations to sample from the distribution. In this

case, there are heaps of different methods now developed in the Bayesian toolbox, which we can

make use of. However, some of these, such as the inverse CDF sampling method, are mostly relev-

ant context of simpler modelling. In the next section, some Markov Chain Monte Carlo (MCMC)

methods for sampling from the posterior distribution will be introduced. Both Neal [2012] and

Chipman et al. [2010] use a sub-element of MCMC methods known as Gibbs sampling in their

papers being an introduction to Bayesian Neural Networks and the development of Bayesian

Additive Regression Trees (BART) respectively.
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4.5.2 MCMC methods

Sampling from the posterior density using MCMC combines the Monte Carlo principle with ideas

from Markov Chain theory; these ideas allow us to have dependency between our consecutive

proposals of the posterior parameter vector, but still have an iterative history converging to a

unique stationary distribution. The reason that dependency is so paramount to its success is that

we can stay longer in the areas of the proposal distribution that contributes to the distribution of

interest, and thus we can limit the computational time before converging to the unique stationary

distribution. This is not generally true, as we for easier problems can make better guesses for the

proposal distribution in first instance and exploit the independence between proposals to produce

the unique stationary distribution more efficiently20.

First, brief remarks on some conditions of a Markov chain will be made, and these will allow

us to use this as the posterior density. After that, both the Metropolis-Hastings and the Gibbs

algorithm will be suggested as algorithms that fulfil these conditions.

First of all, we need the Markov Chain to be ergodic, which will allow us to use the appropri-

ately constructed chain as a distribution according to the relative frequency of which the chain

visits sites of the parameter space [Jackman, 2009]. To have ergodicity of the Markov Chain, we

need it to be irreducible, positive recurrent and aperiodic.

For the Markov Chain to be irreducible, we need it to be able to go everywhere in the parameter

space that it ought to go to from any state that it might be in now with positive probability.

This leads us to the definition

Definition 3. (Irreducible Markov Chain)

For some measure φ, a Markov chain {θ(t)} on a state space Θ with transition kernel K(θ,A)

is said to be φ-irreducible if ∀ A ∈ B(Θ) with φ(A) > 0, ∃ n such that Kn(θ,A) > 0 ∀ θ ∈ Θ. If

this condition holds with n = 1 ∀ A ∈ B(Θ) with φ(A) > 0 then the Markov chain is said to be

strongly irreducible,

where the transition kernel is defined as the conditional probability that at step t, the Markov

chain will ’jump’ from θ(t−1) to the set A [Jackman, 2009]. Irreducibility is sufficient to ensure

the existence of a stationary21 distribution for a Markov Chain, but the additional assumption

of positive recurrence ensures the uniqueness of the stationary distribution. A Markov Chain is

positive recurrent if all states are positive recurrent, and a state i is recurrent if the chain will

20Meaning that the rate at which the Monte Carlo error of the series converges to zero is not as fast as the rate
we would get with an independence sampler. Jackman [2009] show how dependency increases the variance of the
chain, which then increases the required length of the series before we are comfortable that we have explored the
distribution.

21Where stationarity, in this sense, means that the distribution will persist once it is established.
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return to state i with probability 1 within finite time. This ensures that the chain has the same

limiting properties for every starting value.

Next, the notion of periodicity is most easily seen in discrete for Markov Chain on discrete

state spaces, where a chain is periodic if it can end up in areas of the parameter space, wherefrom

it cannot return to other areas of the parameter space. The period thus addresses the need for

other communicating states before being able to revisit the state it is in. Also, the period of any

irreducible chain can be no smaller than the period of any of its states. We need the chain the

be aperiodic, which is defined as an irreducible Markov Chain with period 1. Hence, we need to

be able to revisit our present state in the chain without any interim states.

Now, with irreducibility, positive recurrence and aperiodicity, we have ensured that a station-

ary distribution exists and that it is unique. However, if we can show that the Markov Chain

is reversible then we have also ensured that a stationary distribution exists, and when we have

reversibility the other necessary conditions to establish that the chain is ergodic follows easily in

most cases related to the algorithms we will look at [Jackman, 2009]. This is a nice sufficient

condition as the Metropolis-Hastings algorithm, with the Gibbs sampler as a special case, can

be shown to be reversible. A Markov chain is said to be reversible if it possesses the detailed

balance, which is defined as

Definition 4. (Detailed Balance Condition)

Consider a Markov chain {θ(t)} with state space Θ, transition kernel K(·, ·) and stationary

distribution P(θ|Z). If

P(θ(t))K(θ(t+1), θ(t)) = P(θ(t+1))K(θ(t), θ(t+1))

∀ θ ∈ Θ then the Markov Chain is said to possess detailed balance

So that if we can come up with transition kernels K(·, ·) that are reversible, satisfying the sym-

metry inherent in the detailed balance condition, then the resulting Markov chains will converge

to the stationary distribution, P(θ|Z)22.

The definition of a reversible Markov chain leads us directly to an algorithm that satisfies

the condition, namely the Metropolis-Hastings algorithm. The original algorithm from Metro-

polis et al. [1953] was created using a symmetric proposal distribution, but this was later altered

in Hastings [1970] to include non-symmetric proposal distributions. Following Jackman [2009],

22In short, as we, for discrete time with continuous time related proof and for all states i and j, have that∑
j P(θ(j))K(θ(i), θ(j)) =

∑
j P(θ(i))K(θ(j), θ(i)) = P(θ(i))

∑
j K(θ(j), θ(i)) = P(θ(i)), and so this is a stationary

distribution.
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we say that the Metropolis-Hastings algorithm defines a set of ’jumping rules’ that generate a

Markov chain on the support of P(θ|Z), Θ. At the start of iteration t we have θ(t−1), and we

make the transition to θ(t) if we accept the proposal from the ’proposal’ or ’jumping’ distribu-

tion Jt(θ
∗, θ(t−1)), where θ∗ is a sample from the distribution. The algorithm then defines an

acceptance probability23

α = min

(
P(θ∗|Z)Jt(θ

∗|θ(t−1))

P(θ(t−1)|Z)Jt(θ(t−1)|θ∗)
, 1

)
,

where we notice that the posterior distribution of interest is both in the numerator and the

denominator, so that the constant of proportionality cancels out. To explore the posterior prob-

ability distribution nicely, notice that Jt(θ
∗, θ(t−1)) must resemble P(θ∗|Z) somewhat, as this

is more computationally efficient since we will have higher acceptance ratios and not have to

create seemingly unnecessary proposals in this case. In fact, if we choose Jt(θ
∗|θ(t−1)) as the

target distribution then α = 1. However, if we have high acceptance ratios due to having chosen

Jt(θ
∗|θ(t−1)) to wander around the neighbourhood of the previously accepted value θ(t−1), then we

again have a computationally inefficient exploration of P(θ|Z) as discussed earlier regarding the

benefits of independence between proposals. The argument supporting that the acceptance ratio

in the Metropolis-Hastings algorithm generates a symmetric function that satisfies the reversibil-

ity condition starts with the transition kernel. The transition kernel for the Metropolis-Hastings

algorithm is given by the acceptance probability times the jumping distribution

K(θ(t), θ(t+1)) = Jt(θ
(t)|θ(t+1))α,

and so

P(θ(t)|Z)K(θ(t), θ(t+1)) = P(θ(t)|Z)Jt(θ
(t)|θ(t+1))α

= P(θ(t)|Z)Jt(θ
(t)|θ(t+1)) ·min

(
P(θ(t+1)|Z)Jt(θ

(t+1)|θ(t))

P(θ(t)|Z)Jt(θ(t)|θ(t+1))
, 1

)
= min

(
P(θ(t+1)|Z)Jt(θ

(t+1)|θ(t)),P(θ(t)|Z)Jt(θ
(t)|θ(t+1))

)
,

which is a symmetric function in θ(t) and θ(t+1). This symmetry grants us reversibility of the

resulting Markov chain as given in Definition 4.

There are some traditional general choices for the proposal distribution, and these are presen-

23In the algorithm we compute α and sample U ∼ Unif(0, 1) and accept the proposal θ∗ if α > U .

42 of 80



Reducing Uncertainty and Variance

ted here; the symmetric proposal as in the original Metropolis article Jt(θ
∗|θ(t−1)) = Jt(θ

(t−1)|θ∗)
leading to the simple acceptance probability α = min

(
P(θ∗|Z)

P(θ(t−1)|Z)
, 1
)

; the independent proposal

Jt(θ
∗|θ(t−1)) = Jt(θ

∗) likewise leading to the simple acceptance probability; the random walk

Jt(θ
∗|θ(t−1)) = Jt(θ

∗ − θ(t−1)); and the Gibbs sampler.

4.5.3 The Gibbs sampler

The Gibbs sampler, introduced in Geman and Geman [1984], is often used when θ is high-

dimensional and sampling from the posterior density P(θ|Z) is too hard for any other sampling

method. The Gibbs sampler breaks sampling from P(θ|Z) down to a series of inter-related, easier,

lower-dimensional sampling problems. So, the parameter vector θ is divided into D sub-vectors

proposedly according to correlation and distributional similarity. Then, the Gibbs sampler iterates

through every jth element, with j = 1, ..., D, of θ and in each step evaluates the jth component

of θ conditional on the rest of the elements in θ. The key is that by sampling from this series of

D, lower-dimensional conditional densities, we can generate a Markov Chain on Θ that has the

joint posterior distribution of θ as its unique stationary distribution [Jackman, 2009]. Thus, we

iteratively sample from

θtj ∼ P(θj |θt−1
−j ;Z), θt−1

−j = (θt1, ..., θ
t
j−1, θ

t−1
j+1, ..., θ

t−1
D ), (4.12)

so that we have included updates of the parameter vectors in the conditions, and thereby simplify

the problem. In the sense of the Metropolis-Hastings algorithm we have that each component

of the proposal vector is updated sequentially and implicitly then the jumping distribution are

simply the conditional densities P(θj |θt−1
−j ;Z), and so the acceptance probability would always

be 1, α = 1 [Jackman, 2009]. Furthermore, some of the conditional probabilities might not

be possible to sample from directly, and then we could choose to use the Metropolis-Hastings

algorithm in conjunction with the Gibbs sampler.

4.5.4 Bayesian model averaging

Like the Bayesian information criterion for model selection, we could also use posterior model

probabilities for averaging models. Recall that the BIC uses the relative posterior model probab-

ilities to choose between models, Bayesian model averaging simply uses the results of the models

relative to their posterior probability [Hoeting et al., 1999]. Instead of having parameter un-

certainty directly in Equation (4.10), we will instead sum over a model space with K different

models MK , where each model Mk ∈MK , k = 1, ...,K may be of different type and complexity
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P(znew|Z) =
K∑
k=1

P(znew|Mk) · P(Mk|Z), (4.13)

where the posterior probability for model Mk is given by

P(Mk|Z) =
P(Z|Mk)P(Mk)∑K
l=1 P(Z|Ml)P(Ml)

.

Hence, we are not relieved from the task of choosing a prior for the model probabilities, although

we can choose to remain agnostic about that issue and choose uninformative priors. Another

choice is with regards to both keeping the summation in Equation (4.13) practically feasible

and to have a parsimonious predictive model. One possibility, which underlies Occam’s window

method, excludes models that fare far worse than the model that predicts data the best according

to some threshold [Hoeting et al., 1999]. Another possibility, appealing to sparsity principle and

Occam’s razor, is to exclude complex models which receive less support from the data than their

simpler counterparts. [Hoeting et al., 1999] also provide other of such model exclusion rules for

the data analyst to use if necessary, which can be found in their paper.

Now to one of the most potent ideas within learning - boosting. Variants of its traditional

uses are considered some of the best ”off-the-shelf” procedures for data mining [Friedman et al.,

2009]. Sometimes, though, it fails to have high predictive ability when the relationships between

the input variables are too complex, as the input models, which we will see in the next section,

are required to be rather simple.

4.6 Boosting

The first boosting algorithms, including AdaBoost, was created by Schapire and Freund, who

have published a book about machine learning predictive classification based on the boosting

procedure and algorithm; Schapire and Freund [2012]. However, as the book primarily focuses

on classification issues, we will not be using the book extensively, but only to see the idea of

boosting.

Roughly, the idea of boosting is to take a weak learning algorithm - an algorithm that gives a

classifier that is slightly better than random - and transform it into a strong classifier, which does

much better than random. Boosting procedures does this by taking a collection of weak classifiers,

and then reweighting their contributions to form a classifier with much better accuracy than any

individual classifier. So, in general, boosting is an approach for improving generalisation of a

learning method based on the application of a single method to many appropriately modified

versions of the training data. Many types of methods have been used in combination with
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boosting, these include stumps (regression trees with only one split), small trees (regression trees

with several splits), small linear models or simple nearest-neighbour methods [Cherkassky and

Mulier, 2007]. The most frequently applied method of AdaBoost is trees, where the simplest form

is the boosting of stumps, such that it builds an ensemble by splitting the training data at one

point in one input variable and then training every new instance iteratively by emphasising the

training data mismodelled in the previous instance. The use of smaller trees instead of stumps

allows each model to model multiplicative relations between small sets of variables while still

being a fairly weak identifier.

As previously discussed, AdaBoost is created with the objective of making a set of weak

learners into a strong learner, but after the fact it is shown to be equivalent to a forward stage-

wise24 additive model with exponential loss function and the basis function expansions as indi-

vidual classifiers. The general forward stagewise additive model algorithm is described in the

next section.

4.6.1 Forward stagewise additive modelling

In general, the (additive) basis function expansions have the form

f(X) =
M∑
m=1

βmb(X; γm),

where βm, m = 1, 2, ...,M are the expansion coefficients, and b(X; γm) are usually simple func-

tions of the multivariate argument X, characterized by a set of parameters γ. For trees γ would

parameterise the split variables and split points at the internal nodes, and the predictions at the

terminal nodes [Friedman et al., 2009]. The models, then, are fitted by minimising a loss function

averaged over the training data

min
{βm,γm}Mm=1

L

(
y,

M∑
m=1

βmb(X; γm)

)
. (4.14)

This typically requires computationally intensive numerical optimisation techniques. But as an

alternative, forward stagewise additive modelling approximates the solution to Equation (4.14)

by sequentially adding new basis functions to the expansion without correcting the previously set

coefficients. Such that we do not take into account that a dis-optimal step in this iteration might

lead to better solution in another iteration an eventually a bitter fit to the training data. Because

of that, it can be seen as a greedy algorithm. Following Friedman et al. [2009], the algorithm is

24Note that the stagewise strategy does not adjust previously entered terms when new ones are added, and that
this distinguishes it from stepwise approaches [Friedman, 2001].
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given by

Algorithm 1. Forward Stagewise Additive Modelling

1. Initialise f0(X) = 0.

2. For m = 1, 2, ...M :

(a) Compute

(βm, γm) = arg min
β,γ

L(y, fm−1(X) + βb(X; γ)). (4.15)

(b) Set fm(X) = fm−1(X) + βmb(X; γm)).

The optimisation in Equation (4.15) is typically a grid search, where we at each step find the

solution that maximally reduces the current residual. This is a very computationally inefficient

method of finding the optimum since we do not take into account information pointing to the

direction in which the optimum might be but merely checks all coefficient values in a preset

range. A popular method of optimising Equation (4.15) when the loss function is differentiable

is by gradient descent, which eventually leads to the gradient boosting method.

4.6.2 Gradient boosting

The general negative gradient is given by

−gm(X) = −
[
∂L(y, f(X)

∂f(X)

]
f(X)=fm−1(X)

,

and the steepest descent method then chooses the update standing instead of βb(X; γ) in Equation

(4.15) as hm = −ρmgm(X) where ρm is a scalar and the solution to

ρm = arg min
ρ
L(fm−1(X)− ρgm(X)),

which is then found by line search. So instead of grid searching two parameters, we now only have

to line search one parameter [Friedman, 2001]. The reader eloquent in econometrics might ask

why optimisation schemes free from line search is not used instead. Here Dauphin et al. [2014]

argue that in high-dimensional problems the number of saddle points grows exponentially in the

number of parameters and that methods such as Newton-Raphson or Gauss-Newton25 are prone

25Which, though, solves the problem of intractable second-order differentiation where this is a problem. Although
exploiting this information is more efficient where possible.

46 of 80



Reducing Uncertainty and Variance

to get stuck in these saddle points. The final update fm(X) = fm−1(X) + βmb(X; γm) is then

also replaced with fm(X) = fm−1(X)− ρmgm(X).

Each boosting iteration usually reduces the training sample error, which also means that each

iteration fits the model classes to the training data [Friedman et al., 2009]. As found in Subsection

3.2 this will increase model variance and make predictions worse. However, there are other ways

to control overfitting than merely choosing the number of boosting iterations. First, one can

scale the contribution of each iteration with 0 < ν < 1 in fm(X) = fm−1(X)− νρmgm(X), such

that a lower value of ν result in a larger training error, err. However, lower values (ν < 0.1) are

also found to yield good generalisation abilities, although requiring a larger amount of boosting

iterations and, so, are more computationally demanding.

One could also include stochastic gradient boosting, which creates a new sub-sample consisting

of a part, η, of the training data (without replacement) to use in each iteration, which increases

robustness against overfitting [Friedman, 2002]. Friedman et al. [2009] find that shrinking per-

forms better than stochastic gradient boosting as the number of iterations increase, although

both perform better than no regularisation, and that a combination of the two methods performs

good as well.

This completes the section on model uncertainty and prediction variance and how to deal with

it. Next, we will develop different specific supervised learning algorithms and models, that we

will be using for our predictions.
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5 Supervised Learning Algorithms

In addition to these already voluminous methodology sections, we will set up two very popular

machine learning techniques, namely regression tree models and neural networks. These tech-

niques will be carried out in practice in Section 7 together with the already seen methods of OLS,

ridge, LASSO and elastic net seen in Section 4. These will follow a brief section on the K-nearest

neighbours regression technique used to create a variable in Section 6.

5.1 K-nearest neighbours regression

K-nearest neighbours (KNN) regression is a distance-based non-parametric regression method,

where only a subset of the observations is used for each prediction. If we first define Nk(X) to be

the K-neighbourhood of X, e.g. the set with the lowest distance according to a chosen distance

measure, which is Euclidean for the sake of our use. Then the algorithm simply predicts based

on the average of the K nearest neighbours,

f̂(X) =
1

K

∑
i∈Nk(X)

yi.

5.2 Tree-based methods

Tree-based methods have been very successful since they, in the most uncomplicated cases, are

very intuitive and easy to interpret. Moreover, when ensembles are built from them, they are

easy to manage, are good at finding interacting input variables and show great prediction ability.

However, the case of tree-based methods is not only for use as an off-the-shelf predictor; it has

also won many, in fact most, Kaggle26 competitions. Chen and Guestrin [2016] find that among

the 29 challenge winning solutions published on Kaggle’s blog during 2015, 17 solutions used

XGboost, a variant of the tree-based models described partly later.

The first individual model described is CART (an acronym for Classification And Regression

Trees), a very popular method for tree-based regression by Leo Breiman explained in Breiman

[2017].

5.2.1 Classification and regression trees

In the simplest case, we restrict ourselves to recursive binary partitions. We split the space by

selecting a variable and making a binary split within it, which separates the model outcome into

26Kaggle calls itself ”your home for data science” and has many open data sets to train algorithms, and yourself,
on. They also host competitions, which allow firms to set up prizes for solving their algorithmic problems.
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two regions. We then model the outcome by the mean of y in each region. To make the most of

the model framework, we choose the variable and split-point so to achieve the best fit - although

this definition can vary, e.g. for greedy algorithms the best fit is determined by what explains

the most variance within any given instance [Friedman et al., 2009].

However, we could also make a larger tree than this one stump, and we would do this by

choosing a new split variable and a new split point in each region, and this process can be

continued practically until the algorithms perfectly identify each observation within the sample,

but usually some stopping rule is applied.

Then, intuitively, tree-based methods stratification of the feature space can be represented

by a flowchart, where the algorithm sequentially answers binary questions in the input data that

maximises the variance explained in the outcome variable. Following Friedman et al. [2009],

we say that our data consist of p input variables and an outcome variable for each of the N

observations: that is, (yi, xi) for i = 1, 2, ..., N , with xi = (xi1, xi2, ..., xip). Then we need our

algorithm to select splitting variables, select split points and what shape the tree should have

automatically. Suppose we have stratified the data into M regions R1, R2, ..., RM , then we model

the response as a constant cm in each region

f(X) =
M∑
m=1

cmI(X ∈ Rm).

Where we, just as in the K-nearest neighbour case, see that cm is just the average of the yi

variables within the region when we have squared error loss

ĉm =
1

Nm(X)

∑
xi∈Rm

yi,

where Nm(X) denotes the number of observations in the region Rm. Generally, now, finding the

best partition given a tree depth to minimise the loss is computationally infeasible, as we would

have to take into account an insurmountable number of combinations of splitting variables and

split points, hence we proceed with a greedy algorithm. Starting with all the data, we consider

splitting variable j and split point s and define the pair of half-planes

R1(j, s) = {X|xj ≤ s} and R2(j, s) = {X|xj > s} .

Then we seek the splitting variable j and split point s that solve
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min
j,s

 ∑
xi∈R1(j,s)

(yi − ĉ1)2 +
∑

xi∈R2(j,s)

(yi − ĉ2)2

 .
Now, for each splitting variable, the split point s can be chosen very quickly and hence scanning

through all of the inputs determination of the best pair (j, s) is feasible.

As Chen and Guestrin [2016] note, this is a reasonably sound strategy when the number of

splits is comparatively low, but when constructing huge ensembles of models as those in the next

subsections, we should allow ourselves to make approximations to these, what they call, exact

greedy algorithms. Hence, they use an extension of the general idea of reducing the number of

possible split points in each variable; for example, by only considering a subset of the possible

split points such as the quantiles or percentiles; or by acknowledging one-hot encoded data and

realising that these effectively only have one possible split point.

As noted in Friedman et al. [2009], there are a lot of possibilities for controlling the complexity

of the trees, and without going too much into the details, they find that these are relevant to

consider: a priori specifying tree depth, only split tree nodes if the decrease in loss due to split

exceeds some threshold, and pruning already grown trees by deleting some nodes according to

already seen regularisation methods.

5.2.2 Bagged regression trees and random forests

Bagging as a technique of creating an ensemble of models has already been introduced in Subsec-

tion 4.2. Moreover, as noted in [Friedman et al., 2009] bagging seems to work especially well for

high-variance, low-bias procedures, such as trees described above. Furthermore, the first applica-

tion of bagging in the original article, Breiman [1996], is using trees. However, since the strength

of bagged trees is to reduce variance by using an ensemble of trees, it is a slight disadvantage that

the trees are generated by the same procedure and with bootstrapping samples that are fairly

similar. This means that the trees are similar, and therefore there are less to win by averaging

out the noise.

The idea in random forests, then, is to de-correlate the individual trees by growing them

differently, which, then, gives better chances of reducing variance. In the paper Breiman [2001]

builds upon his previous work on bagged trees and constructs a method of de-correlating them

and naming the method, and the paper, random forests, continuing the botanic analogy. The

random forest model achieves this effect through a random selection of the input variables in

each split. As noted earlier, the additional extension to the standard regression trees also include

new complexity control parameters, and for random forests, we can now choose the number of
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input variables to select from for each split. This is, of course, to be chosen by error estimates,

but we can also be guided by general guidelines such as: the more correlation between the input

variables, the higher the amount of sub-sampling of input variables.

5.2.3 Gradient boosting machines and XGboost

This section introduces the gradient boosting machine in the case of trees from Friedman [2001]

and builds upon the general framework described in the boosting section under Subsection 4.6.2.

Then we note that the ’eXtreme Gradient boosting’ (XGboost) model of Chen and Guestrin

[2016] is an efficient extension of the gradient boosting machine, which also allows for more

tuning parameters, such as sub-sampling of the input variables as in the random forest algorithm

and early stopping. The gradient tree boosting algorithm, or gradient boosting machine, is given

underneath, where the effect of a scaling of the contribution of each iteration and sub-sampling

each target data have been included, as in Friedman [2002], as well as sub-sampling the input

variables.

Algorithm 2. Gradient Boosting Machine with additions

1. Initialise f0(X) = argmin
γ

L(y, γ).

2. For m = 1, 2, ...M :

(a) Compute

rm = −
[
∂L(y, f(X))

∂f(X)

]
f=fm−1

(b) Fit a regression tree of depth 2Jm to a random subset (without replacement), η, with

only a random sample of input variables, b, of the targets rm giving terminal regions

Rjm, j = 1, 2, ...Jm.

(c) For j = 1, 2, ..., Jm compute

cjm = arg min
c

∑
X∈Rjm

L(y, fm−1(X) + c)

(d) Set fm(X) = fm−1(X) + ν
∑Jm

j=1 cjmI(X ∈ Rjm).

3. Output f̂(X) = fM (X).

Here I(·) is the indicator function indicating the membership of X within a given set Rjm. As

can be seen from Algorithm 2, there are a number of different ways to regularise the model. In
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addition to this, the implementation, as discussed earlier, by Chen and Guestrin [2016] introduce

even more ways of regularising the model, and thus this is not an exhaustive list of parameters,

although it arguably includes the most essential regularisation parameters. For example, this

model mixes the attributes of the standard gradient boosting machine and the random forest,

and so it builds de-correlated trees using boosting to create the ensemble. The coefficient b is the

fraction of input variables sampled in each tree. If this parameter is 1, then the trees will tend

to be more correlated than otherwise, and the benefits gained from creating an ensemble of them

will be less. Likewise, we can control the tree depth, the shrinkage parameter ν, and the fraction

of the data to subset in each tree, η, which will also help us control the complexity and prevent

overfitting.

5.2.4 Bayesian additive regression trees

Another important extension to the CART related methods is the Bayesian Additive Regression

Trees (BART) model introduced in Chipman et al. [2010]. As a Bayesian model, they make

use of the techniques of regularisation and prediction by sampling from the posterior as seen

in Subsection 4.5. In BART, each tree is constrained by a regularisation prior to being a weak

learner, hence being somewhat shallow, and fitting and inference are accomplished via an iterative

Bayesian backfitting MCMC algorithm27 that generates samples from a posterior. A further nicety

of this Bayesian type of modelling is that it enables full posterior inference including point and

interval estimates of the unknown regression function as well as the marginal effects of potential

predictors as found in Chipman et al. [2010]. BART distinguishes itself from a previous version

of Bayesian tree models of the same authors introduced in Chipman et al. [1998] by not focusing

on Bayesian model averaging as in Subsection 4.5.4, but rather making a sum of trees but with

each tree regularised to keep their effect small, and so make them weak learners. The BART

model can be expressed as

Y =

 J∑
j=1

g(X;Tj ,Mj)

+ ε, ε ∼ N (0, σ2),

where each binary regression tree is Tj , Mj is the set of parameters ĉmj in each terminal region

and g(·) is the function which assigns all ĉmj ∈ Mj to X. To complete the model specification,

Chipman et al. [2010] impose a prior on all parameters, namely (T1,M1), ..., (TJ ,MJ) and σ.

They do this by reducing the prior formulation problem to the specification of a few interpretable

27Bayesian backfitting is the Gibbs sampling procedure applied to additive models according to the inventors in
Hastie et al. [2000].
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hyperparameters (in the Bayesian sense), which govern priors on Tj ,Mj and σ. An extension of

the model, with corresponding R implementation, is proposed by Kapelner and Bleich [2013], and

they use almost the same hyperparameter and prior specification as described in Chipman et al.

[2010]. It is this extension, named bartMachine, that is implemented in this thesis.

The prior on Tj affects the location of the nodes within the tree. The depth of the tree is

defined as the distance from the root, and thus the root itself has depth 0. Nodes at depth d are

non-terminal with prior probability α(1 + d)−β where α ∈ (0, 1) and β ∈ [0,∞]. This component

of the prior on Tj has the ability to enforce shallow tree structures, and thereby limiting the

flexibility within a tree. In Chipman et al. [2010] they implement and recommend building

the model with α = 0.95 and β = 2 for models with more than one tree, which yields prior

probabilities of the node at depth d being non-terminal with d = 1, 2, 3, 4,≥ 5 to 0.05, 0.55, 0.28,

0.09 and 0.03, respectively. In the application in this thesis, this is considered a bit too shallow,

and so β = 1.5 is considered instead since the value of β will penalise deeper trees less. The prior

for cmj is allowed to be dependent on Tj , and the recommended prior is the conjugate28 normal

distribution P(cmj |Tj) = N (µc, σ
2
c ). To steer the choice of µc and σ2

c , Chipman et al. [2010]

note that E(Y |X) is the sum of the J cmj ’s under the sum-of-trees model, and since the cmj ’s

are apriori iid, the induced prior on E(Y |X) is N (mµc,mσ
2
c ). Kapelner and Bleich [2013] pick

mµcto be the range centre (ymin + ymax)/2. As this can be affected by outliers, they recommend

using the log-transform, if the problem is concerning. The variance hyperparameter σ2
c , then, is

empirically chosen so that the range centre plus or minus k29 variances cover 95% of the outcome

values in the training set. Thus, the value of σ2
c is chosen such that mµc − k

√
mσc = ymin and

mµc + k
√
mσc = ymax. Hence, the larger the value of k the smaller the value of σ2

c , which results

in more model regularisation. For P(σ), the prior on error variance, the choice also falls upon a

conjugate prior. The choice for Chipman et al. [2010] and Kapelner and Bleich [2013] is the same,

although differing in semantics. Thus, following Kapelner and Bleich [2013] lead us to choosing

P(σ) = Γ−1(ν/2, νλ/2), where λ is determined from the data so that there is a q ∈ (0, 1) apriori

chance that the BART model will improve upon the RMSE from an OLS with q = 0.9 by default

[Kapelner and Bleich, 2013]. This prior limits the probability mass placed on small values of σ2

to prevent overfitting. Furthermore, the higher the value of q, the larger the values of the sampled

σ2’s, resulting in more model regularisation [Kapelner and Bleich, 2013].

28Conjugacy in priors is very important to Bayesian modelling since it allows for much simpler posterior distri-
bution. We will not, though, go more in-depth with the matter in this thesis.

29With k = 2 in this implementation.
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5.3 Neural networks

The much-hyped neural network model, typically represented topologically by nodes connected

in different layers, draws its references not to botany, as in tree-based models, but instead to the

human brain. According to Friedman et al. [2009], the idea of neural networks was to extract

linear combinations of inputs and then model the target as a non-linear function of these features.

In the model, derived features zm are created from linear combinations of the inputs, and

then the target y is modelled as a function of linear combinations the zm,

zm = σ(α0m + αTmX), m = 1, ...,M,

f(X) = g(β0 + βTZ),

where Z = (z1, z2, ..., zM ). Also, in the feature equation α0m is termed bias and the vector αm is

termed weights.

Using a single-layer network as in this paper, the activation function σ(·) is typically chosen to

be a sigmoid in the form of a logistic function or a hyperbolic tangent (tanh), but other popular

choices include Gaussian radial basis function and the rectified linear unit (reLU),

σ(·) =



1/(1 + e−(α0m+αTmX)) Logistic function

e(α0m+αTmX)−e−(α0m+αTmX)

e(α0m+αTmX)+e−(α0m+αTmX)
Hyperbolic tangent

e
−||X−cm||22

2σ2 Gaussian radial basis function

max(α0m + αTmX), 0) Rectified linear unit.

The output function, g(·), will define what kind of outcome we want, and since we have a

linear output, we simply want it to be the identification function, i.e. g(β0 + βTZ) = β0 + βTZ.

The derived features zm are called hidden units because the values zm are not directly observed,

and the vector of them, Z, is called a hidden layer. In general, there can be more than one hidden

layer which then constitutes a deep neural network - previously a model that has been difficult to

fit, but which has become subject to intense attention thanks to the work of in particular Geoffrey

Hinton and the idea of greedy layerwise pre-training [Sutskever, 2013]. Note that if the activation

function is linear, and we, therefore, have zero hidden layers, the network becomes a standard

linear model in the case of a linear output layer. The network is then trained by minimising a

loss, which by a squared loss function becomes
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R(θ) =
N∑
i=1

Ri(θ)

=

N∑
i=1

(yi − f(xi))
2

=
N∑
i=1

(yi − g(β0 + βT zi))
2.

The generic approach to minimisation is by gradient descent, as the case was for the gradient

boosting models, which is this case is called back-propagation [Friedman et al., 2009], a name it

has probably been given due to the layered fashion of optimisation using the familiar chain-rule of

differentiation. Typically, we do not want the global minimiser of R(θ) since this is likely to be an

overfit solution. Hence, some regularisation is needed which can be implemented in a number of

ways, say through early stopping or directly through a penalty term, such as the weight decay30.

The derivatives of the model as given in [Friedman et al., 2009] are

∂Ri(θ)

∂βm
= −2(yi − f(xi))σ(α0m + αTmxi)

∂Ri(θ)

∂αm
= −2(yi − f(xi))βσ

′(α0m + αTmxi)xi.

Given these derivatives, a gradient descent update at the (t+ 1)st iteration has the form

β(t+1)
m = β(t)

m − γr
N∑
i=1

∂Ri(θ)

∂β
(r)
m

,

α(t+1)
m = α(t)

m − γr
N∑
i=1

∂Ri(θ)

∂α
(r)
m

,

where the inserted parameter γr is the learning rate, a parameter that controls the size of the

steps and therefore works similarly to ν in Algorithm 2. Now we rewrite the derivatives as

30Implementing the loss as R(θ) + λJ(θ) with regularisation function as in section 4.1
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∂Ri(θ)

∂βm
= δiσ(α0m + αTmxi)

∂Ri(θ)

∂αm
= smixi

where δi and smi are ”errors” from the current model iteration at the output and hidden layer

units respectively. From their definitions, they satisfy

smi = σ′(α0m + αTmxi)βmδi, m = 1, ...,M, (5.1)

which is known as the back-propagation equations. In the forward pass, the weights are fixed,

and the predicted values are computed. In the backward pass, the errors δi are computed, and

then back-propagated via Equation (5.1) to give the errors smi. Both sets of errors are then

used to compute the gradients for the updates in the next forward pass. Back-propagation can,

though, be very slow to compute, but as the Hessian matrix can be large and difficult to work

with, other approximate methods will have to suffice. One problem with optimisation is that the

error function R(θ) is non-convex, possessing many local minima. As a result, the final solution

is quite dependent on the initial weights. Friedman et al. [2009] suggest one must at least try a

number of random starting configurations (within the range [−0.7, 0.7] with scaled data), and then

choosing the solution with the lowest (penalised) error. This procedure sort of mimics bumping

of Subsection 4.3, but averaging procedures are not recommended due to the non-linearity of the

model. Instead, bagging could be a feasible solution within one pre-specified set of initial weights

[Friedman et al., 2009].

5.3.1 Bayesian neural networks

Neal [2012] gives an extensive walk-through of Bayesian methods applied to the neural network

model. Since it is complicated to incorporate prior knowledge, Neal [2012] looks at several possible

classes of prior distributions for network parameters that reach sensible limits as the size of the

networks grow, such as Gaussian diffusion priors, which has been used to win a challenge called

NIPS 2003 [Friedman et al., 2009]. Even though regular MCMC methods could probably be

successfully implemented, Neal [2012] also demonstrate the hybrid Monte Carlo.

Neal [2012] finds that the use of hyperparameters (in the Bayesian sense) controlling the priors

for weights is roughly analogous to the role of a weight decay constant in conventional neural

networks. However, instead, with Bayesian training, values for these hyperparameters (or, more

precisely, their distribution) can be found without the need for a tuning process.
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To be concrete, Neal [2012] finds that one option to the hyperparameter associated with

weights and biases is a Gaussian distribution with zero mean and standard deviation σ, yielding

P(α0m, α1m, ..., αpm) =
1

(2πσ2)−k/2
e−

∑p
j=0

α2jm

2σ2 .

The prior for the hyperparameter itself is expressed in terms of the ”precision”, τ = σ−2, which

is given a prior distribution of the Gamma form with mean ω:

P(τ) =
(u/2ω)u/2

Γ(u/2)
τu/2−1e−τu/2ω,

where the value of u is positive and controls how broad the prior for τ is. These are the same

priors as those in the software implemented in this thesis, and they are a collaboration between

Neal and David McKay, the author inspiring the software, in Neal [2012]. The hierarchical

prior structure implemented they name Automatic Relevance Determination (ARD) prior, which

creates restrictions to overfitting.

Furthermore, in the implementation of the software used in this thesis, the brnn package of R,

they also use a Gauss-Newton approximation to the Hessian for faster optimisation from Foresee

and Hagan [1997], and initial weights given by Nguyen and Widrow algorithm [Rodriguez and

Gianola, 2016].
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6 Data

The following section will describe the data applied in the predictive analysis. It will comprise of

a description of the data and its preprocessing, a description of the input variables in their groups;

house characteristics, local amenities, and macro and municipal level variables and a discussion

of their relevance. And, lastly, a description of the outcome variable; transaction prices of Danish

single-family houses from 2005 to 2016. Observations in the year 2016 are used as a hold-out

sample so that the results can be compared to those of SKAT in that year. Thus, this chapter

will enable the reader to visualise the data and reproduce the results.

6.1 Data description

The raw data stems from several sources which have been carefully chosen and combined to give

the best possible idea of what your house would be worth. The data is not entirely exhaustive

and still has a lot of room for improvement - which will become apparent throughout this section.

The main part of the data is gathered in cooperation with the land surveying company LIFA

A/S through ”Den Offentlige Informationsserver” (OIS), which includes the register databases

”Bygnings- og Boligregistret” (BBR), ”Statens Salgs- og Vurderingsregister” (SVUR) and ”Det

Fælleskommunale Ejendomsstamregister” (ESR). OIS uses a unique identifier for each municip-

ality, which then has a unique identifier for each house in the municipality so that these can be

combined to a unique identifier across all databases. These registers contain several individual

databases each covering unique information.

First, BBR has a data set containing specific characteristics on more than 2.5 million buildings

in Denmark - both private and public. This means that it holds information on each and all

single-family houses and buildings belonging to them such as carports and greenhouses, but also

university buildings, upper secondary school buildings, and daycare facilities. This is important

since a part of the information the data set holds is the geographical location in the form of

longitude and latitude coordinates in the global datum system World Geodetic System (WGS84),

and so can be used to provide important local amenities information for each household. In

addition to this, the data set provides information on building characteristics such as year of

construction, year of reconstruction, total building area, roofing, exterior walling, and heating.

Second, ESR31 provides information on the taxation of the house among other information

such as ownership and cadastral information.

Third, SVUR contains information on historical sale values, dates, types of sale and SKAT’s

31Which according to www.kombit.dk/ESRudfasning is getting phased out as part of the government’s digitalisa-
tion strategy.
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appraisals, which, though, are updated to 2016 values, which is what makes the year 2016 relevant

as a hold-out sample.

Furthermore, in order to exploit the locational data to the fullest, public information is

gathered on www.kortforsyningen.dk, a part of Denmark’s open data strategy, where informa-

tion on the coastline, forests, lakes, train stations and much more are available in shapefile and

other Geographic Information System (GIS) formats.

In order to account for municipality level variables, publicly accessible data from Statistics

Denmark are gathered, which contains all kinds of information on Danish citizens on an aggregated

level32. There are several other small sources of information. Some are utilised in the data, such

as energy labels, and some are discarded due to limited data quality, such as district plans for,

for example, the maximum height of a building.

The structure of the data is characterized as pooled cross-sectional data, implying both cross-

sectional and time-series features. However, this thesis will not exploit the information inherent in

a panel data set, that each house with repeated sales reveals idiosyncratic information about that

house, which may not be revealed in the data set otherwise. This is because one of the primary

data sets containing building information is updated whenever changes to the house information

occur. When this data is linked with the sales data, then some of the house information is

spurious, and we have to delete that sale. But some houses do not have changes between sales,

and this information can potentially be exploited for further research.

6.2 Data preprocessing

The raw data needed extensive preparation and cleaning, and the reader will be spared the details,

but the broad lines of the operations will be given beneath to give an understanding of the data.

6.2.1 House characteristics

First of all, all buildings in BBR are characterized by a unique observation, and so in the respect

of our needs, it is in long format. As the objective is to appraise single-family houses, all buildings

are deleted from the data set if they do not belong to or is a single-family house. Furthermore,

buildings belonging to a given single-family house are then augmented to it. As many of the

variables are categorical on a nominal scale, these are encoded to the building as dummy variables

before augmentation. This has made an enormous complexity in the data set since information

on a possible garage is included in wide format, so that we know if the house includes e.g. an

32It would have been better if these variables were on ZIP-code level rather than municipality level, but this data
is not publicly available.

59 of 80



Data

external garage, and then what building materials are used for the exterior walling and roofing

of that garage. Furthermore, information on heating and type of water access is also provided

in this manner - so-called one-hot encoding. Energy labels are given as categorical values with a

large number of categories since the scale on which they are given has changed during different

time-periods. This data is, though, on an ordinal scale, and this information is exploited by

encoding it as such using the conversion table given in Pedersen [2016], which can be seen in

Appendix B.1 in Figure B.1 only with numerical values33. Since the data on energy labels is

fairly incomplete, the data has been imputed by a standard linear OLS model using an intercept

and log house age and log years since last renovation as independent variables motivated by the

correlations found in Næss-Schmidt et al. [2015].

6.2.2 Locational amenities

Firstly, in the BBR buildings data, there are labels referring to which type of building type it

is, or which type of institution it belongs to. This information is used to create categories of

different types of buildings such as daycare homes, so that the great circle distance to nearest

of each type of building can be calculated. Secondly, coordinates34 on the 50 largest cities in

Denmark are retrieved from www.latitudelongitude.org/dk and used to calculate distances to the

11 largest cities in Denmark, and then also to the nearest of the largest 50 cities in Denmark.

Thirdly, public information on www.kortforsyningen.dk is gathered. This includes point layers

of windmills, city centres and train stations, polygon shape layers of forests and lakes and line

layers of the coast among more. This data is handled using QGIS 2.18.18 and eventually saved

in a format usable for R. For windmills35, city centres and train stations, the information can

be directly used to calculate distances to the nearest of these points. But for forests and lakes

only bigger ones are chosen to be included, so that the distances to the nearest centroids of the

largest 1830 forests and 469 lakes are calculated. For the coastline, the plugin QChainage is

used to select points each 30 metres along the coast, before these are saved and the distances

from each household to the nearest of these points are calculated. Lastly, neighbourhood square

metre prices are included as information for each house. Three different methods of including

this information is chosen. The first one is to select houses sold before the house itself, within the

same year and within two kilometres of the house and weight their square metre prices by the

33Linearity in the effects of getting better energy labelling is not expected, and so for generalised linear model
types, one-hot encoding on these labels is used.

34I suppose the coordinates are some centroid of the polygon shaping the city.
35Although it says so in the GeoDanmark data description, the windmills category does not only include wind-

mills. In a deep-dive on the data, it was noticed that some of the windmills included in the data are actually pylons.
But as both these structures are disliked due to their obstruction of the view, this information is kept anyway.
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inverse of the geographic distance as in McCluskey et al. [2013]. The second method is similar

to the first one, but only using the standard arithmetic average instead of using weights. The

third method is to employ K-nearest neighbour averaging as described in Subsection 5.1 to each

municipality and for houses sold within a given year, where K was chosen as maximally 10, but

could also be lower if the number of sales within that municipality within that year was lower

than 10.

Furthermore, relevant information is found on www.statistikbanken.dk and appended to the

data set on a municipality and yearly level. Among these variables are the Consumer Price Index

(CPI) of Denmark, which is used to deflate all monetary termed values, so that they are presented

in real terms.

Distances are calculated using the Haversine formula for determining great circle distances

between two points on a sphere given their longitudes and latitudes, which is fairly simple and

excludes ellipsoidal effects. It is published in e.g. Sinnott [1984], and the distance can be rewritten

as

d = 2rsin−1

(√
sin2

(
φ2 − φ1

2

)
+ cos(φ1)cos (φ2) sin2

(
ψ2 − ψ1

2

))
where d is the distance between two points with longitude and latitude (ψ, φ) and r is the radius

of the Earth36.

6.2.3 Data filtering

As the aim is to uncover the prices of single-family houses, which is the largest real-estate stock

in Denmark with about 1.2 million of the total 2.2 million houses [Rigsrevisionen, 2013], the

first step in the filtering process is to remove other types of properties, such as condominiums,

terraced houses, etc. The second step is to exclude irregular transactions, and this is possible

since the data in SVUR includes a categorical variable that defines the type of sale. This variable

includes“regular sale”, “foreclosure sale”, “family handover”and“other forms of sale”. Both family

handover, foreclosure sales and other forms of sales will not reflect the market price of the house

as other parameters influence the price. Furthermore, buildings with asbestos are deleted, due to

the limited knowledge of the severity.

Also, as an AVM is intended for cost-effective appraisals of average properties, it is appropriate

to use mechanical and automated criteria to remove unusual observations [Schulz et al., 2014].

Two methods are chosen to this end, with the first one being to exclude houses sold for less than

100,000.- kr. and more than 25,000,000.- kr. as advised by FD [2014], who suggest they do it

36The radius used in this thesis is 6378.137 kilometres.
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to counter typing errors and exclude atypical houses from their statistics. Then, observations on

houses where the ratio of the square metre price of the house to that of the neighbourhood is in

the extreme percentiles are deleted. Chosen percentiles are shown in the table below.

1% 2% 3% 4% 5% 25% 50% 75% 95% 96% 97% 98% 99%

0.225 0.298 0.345 0.383 0.415 0.731 0.963 1.273 2.055 2.185 2.364 2.666 3.344

Table 6.1: Percentiles of the ratio of house price per square metre

In some instances, there are more single-family houses per unique identifier, which, according

to LIFA A/S, can be buildings on a rented plot - these are also deleted.

Independently from the reasoning behind the first filtering, observations in the test year 2016

are deleted if SKAT’s valuations are lower than the arbitrary threshold of 1000.- kr. This amounts

to deleting 468 observations.

6.3 Description of the input variables

In this section, necessary descriptive statistics and explanations on the input variables will be

provided, so that the reader understands this part of the data. Once again, this will be split into

explaining house characteristics and locational amenities.

6.3.1 House characteristics

First, we consider the average, the median, the 5th percentile and the 95th percentile values

for a range of inputs connected to housing characteristics. In parenthesis are the percentages

of how many houses have the specification considered, and the statistics of variables related to

these specifications are conditioned on having the specification. Furthermore, it should be noted

that the energy labels given in the table below are already imputed as described earlier, and so

36.16% of the energy labels are imputed. This is, of course, a problem for the model. Also,

there are R packages that support modelling with missing variables, such as XGboost, or methods

within certain modelling that support smarter imputation, such as the expectation-maximisation

algorithm within Bayesian modelling37. However, since the caret package, that does not support

incomplete data, mainly have been used, imputation of missing energy labels is chosen. Therefore,

the summary statistic of the imputed energy labels is what is presented below.

37Also other model techniques, although more inherent with Bayesian techniques.
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Name of input variable Mean Median 5th percentile 95th percentile

Number of storages 1.02 1 1 1

Building footprint area 127.4 123 68 205

House floor area 129 124 68 209

Taxes 11950 8359 3145 34871

Age 64.24 54 14 136

Years since renovation† (17%) 27.3 26 11 126

Energy label 6.561 7 5 9

Porch area (11.84%) 17.89 16 4 36

Cellar and/or attic area (39.36%) 53.36 50 16 98

Non-dwelling area (14.96%) 30.18 25 10 62

Business area (0.98%) 32.7 24 8 90

Attached garage area (3.46%) 37.82 35 16 69

Attached carport area (3.62%) 33.89 33 18 53

Sunroom/winter garden area (10.75%) 20.43 20 10 33

Attached annex type building (4.58%) 22.1 14 6 69.25

External garage area (21.75%) 33.11 29 15 65

External carport area (29.19%) 29.19 27 14 51

Annex area (18.14%) 33.88 18 6 122

Greenhouse area (0.13%) 10.81 10 5 22

N 179952

Table 6.2: Descriptive statistics of house characteristics

Note: The summary statistics of area type is only from the subset of houses, that has that type of building.

†If the building is not renovated, it is set to be the same age as the building itself. The statistics presented here, though, is

only for those that have been renovated.

As seen from the summary statistics above, there are a number of different characteristics of

a house, which could be important for determining its price.

Most obviously the general condition of a house affects its price. Therefore, all the information

on factors related to the overall conditions of a house is exploited; materials, general renovations as

well as the building years and energy labels (found to have strong relationships in Næss-Schmidt

et al. [2015]). These factors may also (and probably) have a separate effect on the price of a

house, but as a machine learning application with the goal of prediction, we are not so interested

in identification issues and isolating causal effects. Næss-Schmidt et al. [2015] seek to understand

energy labels, and how they affect house prices in Denmark. They had access to the number

of errors and omissions in their houses (tilstandsrapporter) indicating the average condition of

houses, and they find that the number of errors and omissions follow the energy labels quite
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closely. As noted earlier, the table should be read such that e.g. 18.14% of single-family houses

have an annex, and, of those houses, the median area of the annex is 18 square metres.

Furthermore, the data includes information on the materials used in building the houses, and

these are all included as dummy variables.

Exterior wall Roofing Heating

Brick (90.470%) Fibre cement (45.198%) District heating (45.528%)

Lightweight concrete (4.267%) Tile (25.669%) Central heating: 2 units (44.019%)

Wood (2.281%) Cement (17.310%) Central heating (42.983%)

Half-timbering (1.515%) Roofing felt (3.501%) Electric heater (5.412%)

Concrete (0.420%) Built-up (2.505%) Heat pump (4.104%)

Missing (0.014%) Metal (2.024%) Heater (0.864%)

Other (1.033%) Thatched (1.554%) None (0.041%)

Missing (1.350%) Other (∼0%)

PVC (0.082%)

Glass (∼0%)

Other (0.800%)

Supplemental heating Water

Fireplace (2.155%) Public tap water (97.970%)

Other (0.731%) No or well water (0.007%)

Solar panels (0.612%) Other (2.037%)

Heat pump (0.547%)

Heater (0.428%)

Table 6.3: Statistics of house characteristics

Note: If needed, the ”Other” category will be used as base-category.

N = 179952.

Here we see that most Danish single-family houses sold between 2005 and 2016 have brick

exterior walls, fibre cement or tile roofing. Some of the houses have more than one type of heating

installed, and 45.5% have district heating. In addition to the primary heating, some houses also

include other types of heating, e.g. 2.16% of the houses include a fireplace. In BBR, there are

several types of water installations included, which is summed up into three categories. It should

be noted that ”Public tap water” not only includes public tap water but also smaller water boards

only connected to a small set of houses. In the “Other” category, there are also houses with their

own water connection and even smaller water boards.

With all these kinds of information, it is easily imagined that one could create types of houses

from these characteristics that are especially attractive. We could use these variables to know
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whether or not we have a lovely old, but renovated, half-timbered house located centrally in a

big town (or on the countryside). We could also try to detect patrician villas as bigger houses

in bricks and with tile roofing in certain, more affluent, areas built from the 1860s to the 1930s.

These relationships are very complex, and so the data seen here would be best exploited by a

model more adept at complex relationships.

In Appendix B.2 Table B.1 the characteristics of the external buildings, such as the garage,

similar to Table 6.3 are also given. By utilising this data, we can hopefully get a better prediction

of how much a given annex to a given house is worth or what type it is. Using the area of

that external building and what type of material is used to build it could be good predictors of

whether or not it is insulated, and then for garages that they include space not only for cars. This

could be important, since, by Danish law, if a wanted addition of an external building exceeds 50

square metres38, the builder must seek building permission if not otherwise specified within the

local plan. This says something about the magnitude of, for example, a garage greater than 50

square metres. In this data, 10.6% of garages are greater than this amount, so some of these are

probably built for additional purposes.

When investigating the minimum and maximum values of the variables in Table 6.2, it is

found that further cleansing of outliers and typos can be considered, especially in the training set

in the purpose of not fitting too tightly to these extremes, and therefore be more able to predict

the average house. One method with which this can be done is using the Mahalanobis distance as

considered in Schulz et al. [2014], which will find the most extreme properties on selected input

variables weighted by a covariance matrix.

6.3.2 Locational amenities

A common phrase in real estate circles is ”location, location, location” referring to the extreme

importance of a property’s position, which also gave name to TV shows in Denmark and other

countries for the same reasons. Several of the preceding articles reviewed in Section 2 emphasise

the effect of locational amenities on the value of houses. Motivated partly by these papers and

partly by what seems possible with open data, the data set is constructed. For example, as in

e.g. Ottensmann et al. [2008], municipality level variables, such as the median family wealth are

included. Moreover, school spending within the municipality are included since Hayes and Taylor

[1996] have shown the significant effect of school quality39. Furthermore, Ottensmann et al. [2008]

look into several ways in which cities affect the prices of houses, and other articles aiming for

38Found in www.bolius.dk/love-og-regler-for-udhuse-og-skure-17566 the 30th of April 2018
39They have test scores and so they use this as a proxy for school quality, whereas municipality school spending

is used in this thesis.
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prediction, such as McCluskey et al. [2014, 2013], also include some specifications on distances

to cities, and so several variables related to the distance to different cities are included. In the

summary statistic in the Appendix B.3 Table B.2, we can see the rest of the input variables and

some information on how they are distributed. For the interested reader, the chosen GeoDanmark

items’ geographical distribution can also be found in the Appendix B.4.

As problems with spatial autocorrelation, the phenomenon that houses in the same neigh-

bourhoods have similar square metre prices and are mostly of same style, year and quality, have

been investigated in articles such as Basu and Thibodeau [1998], information inherent in the

neighbourhood square metre prices is exploited by introducing three different specifications for

that. The figure beneath plots the average unweighted square metre prices for each municipality

on a map of Denmark in 2016, which gives a great visualisation of the diversity square metre

prices across Denmark.
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Figure 6.1: Average square metre price in 2016

Note: The labels in the top right corner are presented in thousands of Danish kroner in real terms.

Now, from this figure, we can also see importance from unobserved factors such as distance

to the freeway, which can also partly be captured by these general variables. We can also begin

to grasp the necessity of treating spatial autocorrelation directly in the prediction, especially for

linear regressions. Imagine, for example, that we had included a linear effect of the distance to

greater cities, then houses sold on Bornholm would easily be under-priced, as people who bid

for houses on Bornholm probably, heterogeneously, have a lesser preference towards bigger cities,

and value nature (and sun) more. From this graph, we can also see the geographical dispersion

of prices as discussed in Hviid [2017].
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6.4 House prices

As explained in Section 2, prices of single-family houses are relevant in many instances, and even

in the case of taxation use, it is relevant as argued by Rigsrevisionen [2013]. The total recorded

number of sales during the years of 2005 to 2016 is 179952. The summary statistics of these sales

are given in the table below

Mean Median 5th percentile 95th percentile

House Price 1998000 1600000 461347 4737625

Log House Price 14.26 14.29 13.04 15.37

Table 6.4: Descriptive statistics for house prices in Danish kroner

The whole distribution of sales over the years is given in Section B.5 Figure B.8. Interestingly,

there is a fair amount of positive skew in the distribution, it has a fat right tail and is zero-

truncated (of course). For many types of machine learning algorithms, this does not pose a

significant problem. For example, a K-nearest neighbour regression would average sales values

over K similar houses, or tree structures would average sales within certain branches of that tree.

But take a linear model and there are several problems with these characteristics; the model

would linearly extrapolate on the effects it finds so that we could experience negative prices, and

outliers would have a disproportionate weight on the final results. So the linear OLS comparison

model is made (and the other linear models), log house price is used as the outcome variable,

which has a nicer distribution for modelling as we can also see in Section B.5 Figure B.8.

Furthermore, the distribution over the years matches that of the test year, 2016, perfectly

well, as seen when comparing with Figure C.10 in Section 7. Moreover, the distribution of the

number of sales does not suggest any issues with the representability of the year 2016 or any

extraordinary event in this year. The house price index is plotted to show how the number of

sales correlates with the index. We can also see on the figure below that the general house price

index fluctuates a bit less than the number of sales, probably because people are more reluctant

to sell at a loss even though the market is in distress - so they hold on to the house a bit more.
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Figure 6.2: Number of house sales and house price index plotted against sale year

Note: The line shows the House Price Index, and the bars show the distribution of the number of sales over the years.
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7 Results

This chapter presents the results of the prediction models. The results are evaluated on the basis

of Root Mean Squared Error (RMSE), which is what they have been trained to minimise, but they

are also evaluated on Mean Absolute Percentage Error (MAPE) and the fraction of predictions

within the span of [−20%, 20%] around the realised sale price as used in ICE [2016] (subsequently

referred to as ”the percentage within the span”). The implementation of the models is using the

caret package of Kuhn et al. [2008] in R, which includes a wide range of different models and

allows for the tuning of parameters using several error estimates including cross-validation as

applied in this thesis. Furthermore, it is able to handle multiple computer cores fitting models at

the same time using the doParallel package for the Windows OS.

When reading the results section, one should have several delimitations in mind. First, when

building up the data for different model types, more effort into translating each variable to

something that will make the model better can be given. As an example, consider the distance

to Copenhagen which enters in numerical form in the OLS regression, although it certainly does

not have a linear effect on the outcome across the values. Preferably, several dummy variables

with thresholds on the distance would have been made. Instead, only mechanical computations

to tailor to the different model types are used; for linear models, this is a standardization of the

non-binary input variables and a log-transformation of the outcome variable; for neural networks

the non-binary input variables is demeaned and scaled to be in [−1, 1] while binary input variables

are set to be in {−1, 1} such that they geometrically go through origo; for tree-based models,

no changes to the data from the state that they were in. Second, although the predictive model

of ICE is linear with input variable coefficients estimated by OLS, the comparison to the OLS

model in this thesis is not total since theirs is directly set up to handle spatial autocorrelation

within a linear model framework in a smart manner.

In this section, a description of the tuning strategy for the hyperparameters of the models is

given. This is followed by a presentation of the results, and an analysis of the reasons for the

comparative differences in the predictive ability of the models in the data.

7.1 Tuning strategy

Because of the large number of models, observations and computational intensity in the tuning

process, it becomes necessary to have a metaheuristic strategy for the tuning process. Of course,

when the objective is partly to evaluate the models against each other, one should choose one

simple and fair strategy. Birattari and Kacprzyk [2009] find that when several algorithms are

compared, all of them should make use of the available domain-specific knowledge and equal
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computational effort should be invested in all the pilot studies. Similarly, in the testing phase,

all the algorithms should be compared on an equal time basis.

Therefore, the tuning strategy is to make a pilot scheme by randomly drawing 5% of the

observations, which are used to tune the parameters. This has the separate effect lowering the

number of parameters in the tuning process, which is undesirable, as the dummy encoded variables

have so little variance in these cases; some of them will have zero 1 observations such as built-up

roofing on an annex. In some cases, it has been allowed to change tuning parameters, if there

has been a reason to believe that this will improve performance significantly when scaling up the

data. As seen later, this is why the XGboost model has a tree depth of 9 instead of the tree

depth of 5 suggested by the tuning process as depicted in Figure C.7. Preferably, the parameters

are tuned in the full sample, but, due to the limited amount of computer time and power, this

is neglected. In the pilot scheme, a somewhat large number of hyperparameter combination

searches is allowed in the fast algorithms, but a lower number of combinations is preferred in

computationally intensive methods such as BART. Hyperparameter combinations for grid search

are chosen based on rules-of-thumb from e.g. Friedman et al. [2009]. The tuning of all models

can be seen in Appendix C.

7.2 Model performances

Table 7.1 on page 74 together with Figure 7.1 on page 75 present the main results of this thesis

using the metrics RMSE, which is defined as

√
1
N

∑N
i=1

(
yi − f̂(xi)

)2
, MAPE, which is defined

as 1
N

∑N
i=1

∣∣∣∣yi−f̂(xi)
yi

∣∣∣∣ and the percentage within the span. RMSE is very sensitive to the really

expensive houses, and MAPE is more sensitive to the cheaper houses with very volatile prices, so

we have to have those things in mind when evaluating the models. The results are compared with

SKAT’s appraisals, which form some sort of baseline. However, the measure of the performance

relative to SKAT is fairly uncertain since SKAT’s appraisals on average are 9.5% higher than the

realised prices that enter into the analysis. On the other hand, the new appraisals are purely

mechanical, and there are not - as opposed to SKAT’s appraisals - manual corrections. The dif-

ference in the distributions of realised prices and SKAT’s prices can be seen in Figure B.8. The

four main results are presented below.

First, from the top of Table 7.1 we find OLS, ridge, LASSO and the elastic net. These are

modelled on 151 input variables, but the tuning is only on a subset of these variables which
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comes down to 129 variables after clearing variables with low variance40. In this data set, the

models do not find any reason to regularise the OLS fit very much, and so all the variables are

deemed somewhat relevant - or at least the exclusion of unimportant variables is not justified

by the penalisation of other variables. As mentioned in Subsection 3.2, the mechanical inclusion

of all variables squared and all pairwise interaction terms, for those for which it is possible, to

allow for non-linear effects is impossible due to the sheer size of this input matrix. These types

of models can definitely be improved upon if one is willing to invest time in setting up data

specifically for this purpose. One could, for example, include relevant interaction terms manually.

For example, if an interaction between square metre prices in the neighbourhood and house floor

area is included the RMSE decreases by almost 10000.

Nonetheless, these types of models fare poorly with this data set. They only make a minor

improvement to SKAT’s model, and they are outperformed by many others, although doing bet-

ter than CART, which probably fits too closely to the training set data and the Bayesian neural

network which has only been trained on 6.67% of the data and has not been tuned. With the data

as is, these models cannot model any complex variable relationships but only linear effects from

specifications from a baseline, and so there are no positive second-order effects from having a big

house if it is near Copenhagen compared to if it is in Western Jutland, which is unrealistic. Fur-

thermore, three different measures of square metre prices that are somewhat similar are included,

which makes the coefficient estimates more uncertain and therefore are worse for predictions.

That said, though, the input matrix still remains invertible, and so there are differences in the

measures.

Second, CART is the worst performing algorithm of all with a discomforting 16% less predictions

within the span than SKAT. So that although this model is very adept in modelling complex

variable relationships and is easily interpreted, it is not directly applicable. As seen from Figure

C.4 the lowest cross-validation errors are from a max tree depth of 33 and up implying a high

level of complexity in the data, but also that the model would easily overfit. Interestingly, though,

is it that bagging thirty of such CART models produces a model that is much superior to the

first one. Bagged CART has almost 4% more predictions within the span than SKAT and almost

20% less RMSE than CART itself. This suggests that there is a high amount of instability in the

model development, and hence there is a significant amount of variance reduction due to the dif-

40With variance threshold found according to the Bernoulli distribution, where the variance is p(1− p), where p
is the probability of success, and where p is determined from the binomial distribution with the objective of having
5 successes in 8117 · 0.8 ≈ 6494 draws in that variable with probability larger than 99.99%. This is done to ensure
that the model does not break down due to low variance in a variable within the tuning process. This means that
the required p is set to 0.03 and variables with less variance than 0.03 · (1− 0.03) = 0.0291 is deleted.
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ferent choices of splitting variables and split points the bagged models make when presented with

bootstrapped data sets. The story for the random forest model is similar; it achieves substantial

prediction variance reduction by building an ensemble of trees that are de-correlated through a

sub-sampling of the input variables at each splitting. Although nothing can be said for sure as

to why the bagged CART and random forest models have such similar performances, one reason

could be that some of the most important variables are the measures of square metre prices, and

that there is a high chance for the random forest to include at least one of these measures in

each split which lessens the de-correlation, thus making the models more similar to each other.

As seen from Figure C.9, they are more correlated to the each other than any other model. The

Bayesian version within the tree-based models, BART, also predicts reasonably well. Due to its

high computational demand, it even has to do with less data than the other models - it is only

trained on a random sample of 50% of the training data.

Third, XGboost is a fast algorithm with many tuning parameters, and so it allowed doing a

broad range of tuning fast as seen in Figure C.7. This is partly the reason for the success of this

model. Moreover, it also inherits properties of both the random forest model as well as some-

thing similar to the mechanism in bagged CART, but also some properties of the very successful

strategy of building ensembles via boosting. It is by far the best performing algorithm in terms

of predictive ability with a MAPE of approximately 22% compared to approximately 23.5% for

SKAT and almost 10% more predictions within the span than SKAT as seen from Figure 7.1.

Fourth, the darling of the previous attempts to push linear models off the statistical house ap-

praisals throne, the neural network performs fairly well - and a lot better than OLS. It requires

more care and nurturing with regards to the input variables, and also more than has been applied

in this thesis. There is a large variety of these types of models, and so there are a consider-

able amount of scope for the implementation of more flexible, and regularised, types of neural

networks. Furthermore, as seen in Figure C.8, the tuning parameters are not stable, but the

computational intensity of the fitting process makes it more difficult to find good tuning values.

Interestingly, though, is it that even though it has considerably lower RMSE than SKAT, it

also has a considerably higher MAPE. This suggests that the neural network is better than SKAT

at predicting expensive houses, but has problems ”figuring” out how to price cheaper houses. Due

partly to this observation and the somewhat low correlation between the XGboost model and

the neural network model compared to their accuracy seen in Table 7.1 and Figure C.9, it would

be interesting to see if the XGboost model’s predictive ability could be enhanced by stacking it

smartly with the neural network.
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The other neural network model, Bayesian regularisation neural network, fares poorly. In a

comparison in Friedman et al. [2009], it is found to be the best performing model in their data set,

so it is profoundly disappointing that it fares so badly in this case. However, the combination of

Bayesian methods and the neural network method might still be fruitful; it is designed to require

only a few choices of model specification by the researcher since the regularisation is guided by

only a few hyperparameters, which can be guided by data within the fitting process. However,

this process is very computationally demanding, and so the algorithm is slow and can only be

allowed 6.67% of the training data, which is a drag on its predictive ability.

Model name Model performance Tuning parameters R package

OLS 773662 (25.35%) elasticnet 1.1

Ridge 772658 (25.33%) λ = 0.00172 elasticnet 1.1

LASSO 773662 (25.35%) λ = 0 glmnet 2.0− 16

Elastic Net 772658 (25.33%) λ = 0.00172 & α = 1 glmnet 2.0− 16

CART 858751 (31.96%) tree depth = 33 rpart 4.1− 13

Bagged CART† 690021 (23.26%) tree depth = 33 caret 6.0− 79

Random Forest† 694366 (23.18%) subsample = 68.8% randomForest 4.6− 14

BART‡ 692602 (23.34%) # trees = 200 bartMachine 1.2.4.2

XGboost 643168 (21.99%)
M = 200, tree depth = 9, η = 0.6,

xgboost 0.6.4.1
b = 0.8 & ν = 0.04

Neural Network 709237 (25.20%) γr = 0.05 & # hidden features = 60 nnet 7.3− 12

Bayesian Neural Network‡ 834450 (28.66%) # hidden features = 40 brnn 0.6

SKAT 789726 (23.51%)

N 17620

Table 7.1: RMSE and MAPE model performance

Note: The table displays root mean squared errors (RMSE) and in parenthesis is mean absolute percentage errors (MAPE).
In the second to most right column is the best tuned hyperparameter values as determined by cross-validation with K=5.
Note also that the number of input variables, p, and the number of observations may differ between models.
†Ensemble of 30 trees.
‡BART and brnn are computationally demanding, and so only use 50% and 6.67% of the data in the prediction, respectively.
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Figure 7.1: Improvement in the percentage of appraisals within (+/− 20%) span of realised prices
relative to SKAT in the hold-out sample of 2016

Note: The measure of the performance relative to SKAT is fairly uncertain since SKAT’s appraisals on average is 9.5% higher
than the prices, that enter into the analysis. On the other hand the new appraisals are purely mechanical, and there are not
- as opposed to SKAT’s appraisals - manual corrections.

7.3 Ability to predict house prices

Since Rigsrevisionen [2013] finds it necessary to have a viable frame of reference when valuing

houses for taxation purposes, it becomes important to look at which models have the highest

accuracy - no matter the method with which they extract their results. To this purpose, it is

interesting that most of the machine learning algorithms in this thesis outperform both SKAT’s

former appraisals, that might already have been manually corrected by a professional appraiser,

and the OLS model. Furthermore, the inability of the generalised linear models in capturing

important complex effects makes it more interesting to look at neural networks and tree-based

models, which are more adept at handling non-linear relationships. A downside to these types of

methods is that they will come to different conclusions on the house price each time the models

are run with different starting points or when different sub-samples of data are drawn. This is

likely to make it less trustworthy to the general user, whether it is someone buying a house or

the government valuing houses for taxation purposes. However, as the techniques gain popularity

within both the general public and within policymaking as predicted by Athey [2017], machine

learning should be considered more heavily in these matters too, since these initial assessments

are highly encouraging.
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However, before the models can be implemented, there is still a lot of work, and a lot of

different ideas to be carried out. As seen in Figure C.11 on page 113, the best model, the

XGboost model, has trouble predicting the prices of inexpensive homes. This could be because

energy labels serve us badly as a proxy for the condition of the house, or because of the higher

selling period in inexpensive areas compared to expensive areas, which gives the buyer more

leverage, all else equal, in the buying situation. Furthermore, the cadastral area is not included,

and other factors in the deal such as a lawn tractor and furniture cannot be included, which

might affect the value of the house substantially. This is supported by the fact that there is more

dispersion around the median in rural areas, as determined by the Coefficient of Dispersion (CoD)

often calculated in Ratio Studies [IAAO, 2013a], which can be seen in Figure C.1241. These are

examples of the high noise in house price data. In general, several other factors spill into this. For

example, we cannot be too certain on the accuracy of the measurements of our inputs, there are

a lot of individual factors in each specific sale situation, and many houses are inherently unique

or at least has some sort of unobserved heterogeneity.

However, that does not imply that we cannot do even better. In Figure 7.2 on page 78 the

errors of the best model are plotted spatially. As we can see from this visualisation there is

still considerable spatial autocorrelation in the error terms; to be specific notice how the green

values tend to cluster together in groups. Furthermore, the red numbers, those houses that have

been overvalued by the model, tend partly to lie close to trafficked roads or railways - common

knowledge tells us that these are noisy and devalues the house. These points imply that there still

is a lot of scope for improving the models via improving the data and tailoring it to the specific

models. Furthermore, if these methods should be used in the governmental issue of predicting

house prices for taxation, then more backtesting and further statistics are necessary; how will the

new house valuations affect the taxes on a municipal and regional level? Is it possible for a variable

that will structurally enhance the valuation of a house to have an adverse effect under certain

circumstances? Is the sample of sold single-family houses representative for the whole population

of Danish single-family houses, so that the generalisation has satisfactory external validity? And

further reliability and robustness measures, such as those suggested in IAAO [2013a] and IAAO

[2013b].

To the other end of evaluating the predictive ability of machine learning algorithms compared

to the standard econometric linear model, these results are very uplifting. As machine learning

algorithms are better at handling complex relationships and noisy and high-dimensional data in

41The COD is defined as: COD = 100
Rm

[∑N
i=1

∣∣∣∣Ri−Rm
N

∣∣∣∣], where Ri ∀ i = 1, ..., N is the ratio of the prediction to

the realised price and Rm = median (R) with R = {R1, ..., RN}
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predictive issues, they massively outperform their linear peer. This thesis, then, echoes Mul-

lainathan and Spiess [2017] and Athey [2017] in applauding and welcoming the impact machine

learning will have on econometrics - and hope that the acceptance of these methods will increase

for policymakers in the future.
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Figure 7.2: Errors of the best model visualised spatially in a northern part of the Copenhagen
metropolitan area

Note: The green numbers show errors of the XGboost model where it has predicted a too low value and adversely the red
numbers show where it has predicted a too high value.
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8 Conclusion

In this thesis, an introduction to the use of machine learning algorithms for prediction is given,

and these are applied to a very relevant issue. Several of central elements in the machine learning

toolbox are looked at; the bias-variance trade-off; the estimation of various errors; model regu-

larisation for reducing complexity; creating ensembles of models; and some individual algorithm

types, respectively. A notable size of the thesis is devoted to the use of these methods within

an application, that could be relevant for both private, corporate and governmental use, namely

mass appraisal of houses.

The prediction of house prices is an exceptionally difficult task. The data is subject to a lot

of noise because of the inherently unique situation each and every house sale is, and it is chal-

lenging to gather data of good quality. Furthermore, there is a huge amount of unobserved

heterogeneity partly because each house is a composite of so many important factors, which may

be prioritised differently for each individual house buyer. To add to the difficulty, these factors

have complex relationships with each other and are in themselves probably not linear. In 2013

the Danish tax authority was deemed by the government not to have lived up to its responsibility

to deliver precise, transparent and just valuations, and so the Danish governmental valuation of

houses was temporarily suspended. An internal group within the Danish tax authority, ICE, was

then created and assigned to the job of creating a better mass appraisal model. The current

Danish laws effectively inhibit ICE from exploiting the advances in machine learning algorithms

within prediction problems. In this thesis, though, it is argued that the use of machine learning

algorithms to this issue should be reconsidered by the government since its predictive performance

over its linear peer is substantial. Nonetheless, the use of good property appraisals goes beyond

the scope of the government. For example, banks can use them when underwriting loan advances,

home equity withdrawals and remortgaging or aspiring homeowners can use them to gain a good

understanding of the housing market in different areas and possibly as a guideline for their offer.

It is argued that the problem of mass appraisal is inherently one of prediction, which makes

it both interesting and concerning that most of the mass appraisal literature concerns itself with

linear estimation or close cousins of it. Machine learning algorithms are explicitly concerned with

prediction rather than consistent and unbiased estimation of parameters; this feature makes it

more adept to these kinds of problems. Although it is recognised that there indeed are other

issues involved in the use of appraisal models, prediction accuracy is the sole objective when

evaluating the models.
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From data gathered from several public Danish information sources, a range of different models is

estimated - ranging from the linear model to generalised linear models to tree-based models and

then to neural networks. These are compared to each other and to the suspended valuations of

SKAT, which, though, are still being updated. It is found that the generalised linear models can-

not exploit their abilities to regularise the linear model to the fullest since this involves creating

an infeasibly large input matrix. Instead, methods that inherently model complex and non-linear

variable relationships produce superior predictive abilities. Hitherto, the darling of academics

who try to create an automated valuation model using machine learning models is the neural

network. Even though the conclusion that neural networks are inferior to tree-based models in

predicting house prices cannot be made as these can be greatly extended, it is found that the

tree-based models produce the best results under the settings. In particular, the XGboost model,

which has won many Kaggle competitions too, has the best predictive ability by a considerable

margin. Its success is partly attributed to its fast algorithm, which allows assessing more tun-

ing combinations within a limited time frame and partly attributed to its ability to detect and

fit complex relationships using flexible regularisation. Its flexible regularisation comprises both

elements known from random forests and bagged CART but also some of its nature from the

boosting method.

Admittedly, the model would not be fit for direct use as of now, and thus suggestions on some

issues to be dealt with going forward are made. These include both policy perspectives, issues

regarding further model testing, and issues with the specific models one could continue to de-

velop. Nonetheless, the conclusion of this thesis is twofold. First, the superiority of machine

learning algorithms in contrast to the OLS-based prediction models is echoed. Second, while the

techniques gain popularity within both the general public and within policy making, machine

learning should be considered more heavily in Danish mass appraisal models since these initial

assessments are highly encouraging.
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A Mathematical Derivations

A.1 Optimism of the training error rate

Let f̂(xi) = ŷi, then
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A.2 The information criteria

In a case of K parametric models MK , where each model Mk ∈ MK , k = 1, ...,K requires

estimating d parameters θ ∈ Rd. The BIC, AIC and HQ choose the model to minimise the

expressions of the form

IC(k) = −2N−1log[Pθ̂(Y )] + h(nk)g(N)

over all models, where Pθ̂(Y ) is the likelihood of the data evaluated at the parameter estimates

and h(d) is the penalising expression of model complexity, which is increasing in d, and g(N) is

a function decreasing in sample size, N . AIC, BIC and HQ now looks like this:

BIC : − 2N−1log[Pθ̂(Y )] + dlog(N)N−1

AIC : − 2N−1log[Pθ̂(Y )] + 2dN−1

HQ : − 2N−1log[Pθ̂(Y )] + 2dlog(log(N))N−1

[Elliott and Timmermann, 2016].

A.3 On bootstrapping

The derivation of the ”.632 estimator” is complex, but intuitively it pulls the leave-one out boot-

strap down toward the training error rate, and hence reduces its upward bias [Friedman et al.,

2009]. The constant of the estimate is derived from the probability of a given observation i being

in a given sample b, as the contribution to the bootstrap estimate will be zero otherwise:

Pr(observation i ∈ bootstrap sample b) = 1−
(

1− 1

N

)N
≈ 1− e−1

= 0.632.

The 0.632 estimator is defined as

Êrr
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i=1

1

|C−i|
∑
b∈C−i

L(yi, f̂
∗b(xi)),

Where C−i is the set of indices of the bootstrap samples b that do not contain observation i



and |C−i| is the number of such samples.

As the .632 estimator can break down in overfit situations other measures have been suggested.

For more information see Efron and Tibshirani [1997] for the derivation and discussion of the

benefits of the ”.632+ estimator”

A.4 Bayes estimates

First, to see how the Bayesian estimates with given priors are equivalent to the minimisation with

regularisation specification we rewrite the likelihood function.

We assume that Y1, Y2, ..., Yn are independent and Yi ∼ N (βTxi, σ
2) where xi ∈ Rp. Then
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Where we add and subtract (Y −Xβ̂)T (Y −Xβ̂) where β̂ = (XTX)−1XT y = β̂ML = β̂OLS

such that
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Now, to see the equivalence with the ridge estimate, we assume that βj has a prior distribution

βj ∼ N(0, τ2), j = 1, ..., p, where β1, ..., βp are independent and λ = σ2/τ2 and β̂(λ) is the ridge

estimate of β. We start with the Bayesian posterior of β, and then utilise the form of the likelihood

in equation (A.1).
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Which we can maximise to get the ridge estimator in equation (4.3).

When it comes to the LASSO estimate we instead choose the Laplacian prior f(βi) =

1/(2τ2)exp
(
−|βi|/τ2

)
and now we instead have that
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Where the minimisation hereof is equivalent to that of equation (4.4) up to a rescaling of λ.



B Data visualisations

B.1 Energy labels

Figure B.1: Conversion table for energy labelling

B.2 External buildings’ characteristics

Carport Garage

Exterior wall Roofing Exterior wall Roofing

Wood (52.18%) Built-up (13.208%) Brick (65.501%) Fibre cement (36.891%)

Brick (14.37%) Metal (11.511%) Wood (12.271%) Built-up (14.816%)

Lightweight concrete (0.901%) Fibre cement (8.653%) Lightweight concrete (6.684%) Tile (12.356%)

Metal (0.477%) Roofing felt (7.615%) Metal (0.445%) Roofing felt (9.859%)

Concrete (0.066%) Cement (5.287%) Concrete (0.416%) Metal (4.967%)

Other (32.005%) Tile (4.025%) Other (14.681%) Cement (4.882%)

Other (49.701%) Other (16.229%)

Annex

Exterior wall Roofing

Brick (39.088%) Fibre cement (28.477%)

Wood (30.315%) Roofing felt (12.203%)

Lightweight concrete (4.160%) Metal (8.534%)

Metal (1.173%) Tile (8.356%)

Concrete (0.236%) Cement (6.043%)

Other (25.028%) Built-up (4.386%)

Other (32.000%)

Table B.1: Descriptive statistics of external buildings’ characteristics

Note: The ”Other” category includes missing variables in these statistics, and, if needed, this will be the base category.





B.3 Distances and other summary statistics

Name of input variable Mean Median 5th percentile 95th percentile

Distances to buildings

Nursing home 4.58 2.24 0.26 16.09

Daycare centre 1.07 0.51 0.13 4.25

Health centre 9.15 4.53 0.44 29.74

Hospital 4.40 2.91 0.39 12.82

Primary school 6.08 3.72 0.42 21.98

High school 1.12 0.65 0.16 3.88

University 35.92 29.43 2.95 87.96

Other teaching institution 6.70 3.32 0.42 25.69

Transport building 1.39 0.76 0.14 4.79

Distances to cities

Copenhagen 144.62 160.96 8.32 259.55

Aarhus 106.62 110.08 20.69 161.42

Odense 110.39 113.25 17.51 207.11

· · · other cities excluded

Closest of 50 cities 14.29 10.07 1.01 38.00

Distances to GeoDanmark data

City centre 9.96 8.16 0.81 26.42

Train station 9.77 3.56 0.51 27.46

Windmill 4.51 3.77 1.01 10.56

Lake 8.26 6.24 1.44 20.51

Wood 4.40 3.67 1.31 9.99

Coast 9.88 5.71 0.39 37.99

Square metre prices

Neighbourhood m2 price† 15964 12935 5402 37462

Neighbourhood m2 price‡ 15907 12831 5319 37691

Neighbourhood m2 price◦ 15856 12737 5981 37391

Municipality level variables and others

Spending (per citizen) 56856 56523 50895 65042

School spending (per pupil) 62203 62066 52900 71930

Cultural spending (per citizen) 1582 1508 951 2364

Debt (per citizen) 16670 15650 7633 28280

Family wealth 2016 2041712 1796446 1514223 3688995

Unemployment level 4.28 4.30 2 6.3

Percentage non-western 1.96 1.80 1.04 3.94

House Price Index from Statistics Denmark 101.91 97.70 87.26 120.57

N 179952

Table B.2: Descriptive statistics of locational amenities

Note: The summary statistics of area type is only from the subset of houses that has the given type of building.

† Unweighted.

‡ Weighted by the inverse of the distance.

◦ KNN regression within municipality.



B.4 Plots of geographically distributed items related to input variables

Figure B.2: The 469 lakes in the analysis

Note: Preferably more lakes would have been included in the analysis.



Figure B.3: The 1830 forests in the analysis



Figure B.4: All 6175 windmill type construction



Figure B.5: All 503 train stations in Denmark



Figure B.6: All 227 city centres obtained from GeoDanmark



Figure B.7: The coastline in QGIS



B.5 Statistics of house prices

Figure B.8: Histogram of realised prices in Danish kroner



C Results and Tunings

In this appendix section, tuning figures using the R package ggplot2 are presented.

C.1 Tunings

Figure C.1: Tuning of hyperparameters in ridge regression



Figure C.2: Tuning of hyperparameters in LASSO regression



Figure C.3: Tuning of hyperparameters in elastic net regression



Figure C.4: Tuning of hyperparameters in CART regression



Figure C.5: Tuning of hyperparameters in random forest regression



Figure C.6: Tuning of hyperparameters in BART regression



Figure C.7: Tuning of hyperparameters in XGboost regression



Figure C.8: Tuning of hyperparameters in neural network regression



C.2 Results and other graphics

Figure C.9: Model correlations including realised sale price and SKAT’s appraisals



Figure C.10: Histogram of realised prices and SKAT’s valuations in 2016

Note: The the blue fill is a histogram of SKAT’s valuations in 2016, and the black fill is a histogram of the realised prices of

the same houses in 2016.



Figure C.11: Percentage deviations between predictions and realised prices

Note: This plot is only on a subset of the data to better visualise the point being made. It depicts absolute percentage
deviations between the XGboost model and the observed prices.



Figure C.12: Cross-country Coefficient of Dispersion

Note: The CoD measures appraisal uniformity and variability and is a relative measure of how much the value ratios differ
from the median ratio (the greater the inconsistency in the value ratios).
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